You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

278 lines
9.1 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import warnings
import cv2
import numpy as np
from skimage import morphology
from scipy import ndimage, optimize
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
from sklearn import metrics
from sklearn.cluster import KMeans
from .utils import prepro_mask, calc_distance
def cut_road_connection(mask: np.ndarray, line_width: int=6) -> np.ndarray:
"""
Connecting cut road lines.
The original article refers to
Wang B, Chen Z, et al. "Road extraction of high-resolution satellite remote sensing images in U-Net network with consideration of connectivity."
(http://hgs.publish.founderss.cn/thesisDetails?columnId=4759509).
This algorithm has no public code.
The implementation procedure refers to original article,
and it is not fully consistent with the article:
1. The way to determine the optimal number of clusters k used in k-means clustering is not described in the original article. In this implementation, we use the k that reports the highest silhouette score.
2. We unmark the breakpoints if the angle between the two road extensions is less than 90°.
Args:
mask (np.ndarray): Mask of road.
line_width (int, optional): Width of the line used for patching.
. Default is 6.
Returns:
np.ndarray: Mask of road after connecting cut road lines.
"""
mask = prepro_mask(mask)
skeleton = morphology.skeletonize(mask).astype("uint8")
break_points = _find_breakpoint(skeleton)
labels = _k_means(break_points)
match_points = _get_match_points(break_points, labels)
res = _draw_curve(mask, skeleton, match_points, line_width)
return res
def _find_breakpoint(skeleton):
kernel_3x3 = np.ones((3, 3), dtype="uint8")
k3 = ndimage.convolve(skeleton, kernel_3x3)
point_map = np.zeros_like(k3)
point_map[k3 == 2] = 1
point_map *= skeleton * 255
# boundary filtering
filter_w = 5
cropped = point_map[filter_w:-filter_w, filter_w:-filter_w]
padded = np.pad(cropped, (filter_w, filter_w), mode="constant")
breakpoints = np.column_stack(np.where(padded == 255))
return breakpoints
def _k_means(data):
silhouette_int = -1 # threshold
labels = None
for k in range(2, data.shape[0]):
kms = KMeans(k, random_state=66)
labels_tmp = kms.fit_predict(data) # train
silhouette = metrics.silhouette_score(data, labels_tmp)
if silhouette > silhouette_int: # better
silhouette_int = silhouette
labels = labels_tmp
return labels
def _get_match_points(break_points, labels):
match_points = {}
for point, lab in zip(break_points, labels):
if lab in match_points.keys():
match_points[lab].append(point)
else:
match_points[lab] = [point]
return match_points
def _draw_curve(mask, skeleton, match_points, line_width):
result = mask * 255
for v in match_points.values():
p_num = len(v)
if p_num == 2:
points_list = _curve_backtracking(v, skeleton)
if points_list is not None:
result = _broken_wire_repair(result, points_list, line_width)
elif p_num == 3:
sim_v = list(itertools.combinations(v, 2))
min_di = 1e6
for vij in sim_v:
di = calc_distance(vij[0][np.newaxis], vij[1][np.newaxis])
if di < min_di:
vv = vij
min_di = di
points_list = _curve_backtracking(vv, skeleton)
if points_list is not None:
result = _broken_wire_repair(result, points_list, line_width)
return result
def _curve_backtracking(add_lines, skeleton):
points_list = []
p1 = add_lines[0]
p2 = add_lines[1]
bpk1, ps1 = _calc_angle_by_road(p1, skeleton)
bpk2, ps2 = _calc_angle_by_road(p2, skeleton)
if _check_angle(bpk1, bpk2):
points_list.append((
np.array(
ps1, dtype="int64"),
add_lines[0],
add_lines[1],
np.array(
ps2, dtype="int64"), ))
return points_list
else:
return None
def _broken_wire_repair(mask, points_list, line_width):
d_mask = mask.copy()
for points in points_list:
nx, ny = _line_cubic(points)
for i in range(len(nx) - 1):
loc_p1 = (int(ny[i]), int(nx[i]))
loc_p2 = (int(ny[i + 1]), int(nx[i + 1]))
cv2.line(d_mask, loc_p1, loc_p2, [255], line_width)
return d_mask
def _calc_angle_by_road(p, skeleton, num_circle=10):
def _not_in(p1, ps):
for p in ps:
if p1[0] == p[0] and p1[1] == p[1]:
return False
return True
h, w = skeleton.shape
tmp_p = p.tolist() if isinstance(p, np.ndarray) else p
tmp_p = [int(tmp_p[0]), int(tmp_p[1])]
ps = []
ps.append(tmp_p)
for _ in range(num_circle):
t_x = 0 if tmp_p[0] - 1 < 0 else tmp_p[0] - 1
t_y = 0 if tmp_p[1] - 1 < 0 else tmp_p[1] - 1
b_x = w if tmp_p[0] + 1 >= w else tmp_p[0] + 1
b_y = h if tmp_p[1] + 1 >= h else tmp_p[1] + 1
if int(np.sum(skeleton[t_x:b_x + 1, t_y:b_y + 1])) <= 3:
for i in range(t_x, b_x + 1):
for j in range(t_y, b_y + 1):
if skeleton[i, j] == 1:
pp = [int(i), int(j)]
if _not_in(pp, ps):
tmp_p = pp
ps.append(tmp_p)
# calc angle
theta = _angle_regression(ps)
dx, dy = np.cos(theta), np.sin(theta)
# calc direction
start = ps[-1]
end = ps[0]
if end[1] < start[1] or (end[1] == start[1] and end[0] < start[0]):
dx *= -1
dy *= -1
return [dx, dy], start
def _angle_regression(datas):
def _linear(x: float, k: float, b: float) -> float:
return k * x + b
xs = []
ys = []
for data in datas:
xs.append(data[0])
ys.append(data[1])
xs_arr = np.array(xs)
ys_arr = np.array(ys)
# horizontal
if len(np.unique(xs_arr)) == 1:
theta = np.pi / 2
# vertical
elif len(np.unique(ys_arr)) == 1:
theta = 0
# cross calc
else:
k1, b1 = optimize.curve_fit(_linear, xs_arr, ys_arr)[0]
k2, b2 = optimize.curve_fit(_linear, ys_arr, xs_arr)[0]
err1 = 0
err2 = 0
for x, y in zip(xs_arr, ys_arr):
err1 += abs(_linear(x, k1, b1) - y) / np.sqrt(k1**2 + 1)
err2 += abs(_linear(y, k2, b2) - x) / np.sqrt(k2**2 + 1)
if err1 <= err2:
theta = (np.arctan(k1) + 2 * np.pi) % (2 * np.pi)
else:
theta = (np.pi / 2.0 - np.arctan(k2) + 2 * np.pi) % (2 * np.pi)
# [0, 180)
theta = theta * 180 / np.pi + 90
while theta >= 180:
theta -= 180
theta -= 90
if theta < 0:
theta += 180
return theta * np.pi / 180
def _cubic(x, y):
def _func(x, a, b, c, d):
return a * x**3 + b * x**2 + c * x + d
arr_x = np.array(x).reshape((4, ))
arr_y = np.array(y).reshape((4, ))
popt1 = np.polyfit(arr_x, arr_y, 3)
popt2 = np.polyfit(arr_y, arr_x, 3)
x_min = np.min(arr_x)
x_max = np.max(arr_x)
y_min = np.min(arr_y)
y_max = np.max(arr_y)
nx = np.arange(x_min, x_max + 1, 1)
y_estimate = [_func(i, popt1[0], popt1[1], popt1[2], popt1[3]) for i in nx]
ny = np.arange(y_min, y_max + 1, 1)
x_estimate = [_func(i, popt2[0], popt2[1], popt2[2], popt2[3]) for i in ny]
if np.max(y_estimate) - np.min(y_estimate) <= np.max(x_estimate) - np.min(
x_estimate):
return nx, y_estimate
else:
return x_estimate, ny
def _line_cubic(points):
xs = []
ys = []
for p in points:
x, y = p
xs.append(x)
ys.append(y)
nx, ny = _cubic(xs, ys)
return nx, ny
def _get_theta(dy, dx):
theta = np.arctan2(dy, dx) * 180 / np.pi
if theta < 0.0:
theta = 360.0 - abs(theta)
return float(theta)
def _check_angle(bpk1, bpk2, ang_threshold=90):
af1 = _get_theta(bpk1[0], bpk1[1])
af2 = _get_theta(bpk2[0], bpk2[1])
ang_diff = abs(af1 - af2)
if ang_diff > 180:
ang_diff = 360 - ang_diff
if ang_diff > ang_threshold:
return True
else:
return False