You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

170 lines
5.2 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
def bbox_area(boxes):
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def intersection_over_box(chips, boxes):
"""
intersection area over box area
:param chips: C
:param boxes: B
:return: iob, CxB
"""
M = chips.shape[0]
N = boxes.shape[0]
if M * N == 0:
return np.zeros([M, N], dtype='float32')
box_area = bbox_area(boxes) # B
inter_x2y2 = np.minimum(np.expand_dims(chips, 1)[:, :, 2:],
boxes[:, 2:]) # CxBX2
inter_x1y1 = np.maximum(np.expand_dims(chips, 1)[:, :, :2],
boxes[:, :2]) # CxBx2
inter_wh = inter_x2y2 - inter_x1y1
inter_wh = np.clip(inter_wh, a_min=0, a_max=None)
inter_area = inter_wh[:, :, 0] * inter_wh[:, :, 1] # CxB
iob = inter_area / np.expand_dims(box_area, 0)
return iob
def clip_boxes(boxes, im_shape):
"""
Clip boxes to image boundaries.
:param boxes: [N, 4]
:param im_shape: tuple of 2, [h, w]
:return: [N, 4]
"""
# x1 >= 0
boxes[:, 0] = np.clip(boxes[:, 0], 0, im_shape[1] - 1)
# y1 >= 0
boxes[:, 1] = np.clip(boxes[:, 1], 0, im_shape[0] - 1)
# x2 < im_shape[1]
boxes[:, 2] = np.clip(boxes[:, 2], 1, im_shape[1])
# y2 < im_shape[0]
boxes[:, 3] = np.clip(boxes[:, 3], 1, im_shape[0])
return boxes
def transform_chip_box(gt_bbox: 'Gx4', boxes_idx: 'B', chip: '4'):
boxes_idx = np.array(boxes_idx)
cur_gt_bbox = gt_bbox[boxes_idx].copy() # Bx4
x1, y1, x2, y2 = chip
cur_gt_bbox[:, 0] -= x1
cur_gt_bbox[:, 1] -= y1
cur_gt_bbox[:, 2] -= x1
cur_gt_bbox[:, 3] -= y1
h = y2 - y1
w = x2 - x1
cur_gt_bbox = clip_boxes(cur_gt_bbox, (h, w))
ws = (cur_gt_bbox[:, 2] - cur_gt_bbox[:, 0]).astype(np.int32)
hs = (cur_gt_bbox[:, 3] - cur_gt_bbox[:, 1]).astype(np.int32)
valid_idx = (ws >= 2) & (hs >= 2)
return cur_gt_bbox[valid_idx], boxes_idx[valid_idx]
def find_chips_to_cover_overlaped_boxes(iob, overlap_threshold):
chip_ids, box_ids = np.nonzero(iob >= overlap_threshold)
chip_id2overlap_box_num = np.bincount(chip_ids) # 1d array
chip_id2overlap_box_num = np.pad(
chip_id2overlap_box_num, (0, len(iob) - len(chip_id2overlap_box_num)),
constant_values=0)
chosen_chip_ids = []
while len(box_ids) > 0:
value_counts = np.bincount(chip_ids) # 1d array
max_count_chip_id = np.argmax(value_counts)
assert max_count_chip_id not in chosen_chip_ids
chosen_chip_ids.append(max_count_chip_id)
box_ids_in_cur_chip = box_ids[chip_ids == max_count_chip_id]
ids_not_in_cur_boxes_mask = np.logical_not(
np.isin(box_ids, box_ids_in_cur_chip))
chip_ids = chip_ids[ids_not_in_cur_boxes_mask]
box_ids = box_ids[ids_not_in_cur_boxes_mask]
return chosen_chip_ids, chip_id2overlap_box_num
def transform_chip_boxes2image_boxes(chip_boxes, chip, img_h, img_w):
chip_boxes = np.array(sorted(chip_boxes, key=lambda item: -item[1]))
xmin, ymin, _, _ = chip
# Transform to origin image loc
chip_boxes[:, 2] += xmin
chip_boxes[:, 4] += xmin
chip_boxes[:, 3] += ymin
chip_boxes[:, 5] += ymin
chip_boxes = clip_boxes(chip_boxes, (img_h, img_w))
return chip_boxes
def nms(dets, thresh):
"""Apply classic DPM-style greedy NMS."""
if dets.shape[0] == 0:
return dets[[], :]
scores = dets[:, 1]
x1 = dets[:, 2]
y1 = dets[:, 3]
x2 = dets[:, 4]
y2 = dets[:, 5]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
ndets = dets.shape[0]
suppressed = np.zeros((ndets), dtype=np.int)
# nominal indices
# _i, _j
# sorted indices
# i, j
# temp variables for box i's (the box currently under consideration)
# ix1, iy1, ix2, iy2, iarea
# variables for computing overlap with box j (lower scoring box)
# xx1, yy1, xx2, yy2
# w, h
# inter, ovr
for _i in range(ndets):
i = order[_i]
if suppressed[i] == 1:
continue
ix1 = x1[i]
iy1 = y1[i]
ix2 = x2[i]
iy2 = y2[i]
iarea = areas[i]
for _j in range(_i + 1, ndets):
j = order[_j]
if suppressed[j] == 1:
continue
xx1 = max(ix1, x1[j])
yy1 = max(iy1, y1[j])
xx2 = min(ix2, x2[j])
yy2 = min(iy2, y2[j])
w = max(0.0, xx2 - xx1 + 1)
h = max(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (iarea + areas[j] - inter)
if ovr >= thresh:
suppressed[j] = 1
keep = np.where(suppressed == 0)[0]
dets = dets[keep, :]
return dets