You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
5.2 KiB
170 lines
5.2 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import numpy as np |
|
|
|
|
|
def bbox_area(boxes): |
|
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) |
|
|
|
|
|
def intersection_over_box(chips, boxes): |
|
""" |
|
intersection area over box area |
|
:param chips: C |
|
:param boxes: B |
|
:return: iob, CxB |
|
""" |
|
M = chips.shape[0] |
|
N = boxes.shape[0] |
|
if M * N == 0: |
|
return np.zeros([M, N], dtype='float32') |
|
|
|
box_area = bbox_area(boxes) # B |
|
|
|
inter_x2y2 = np.minimum(np.expand_dims(chips, 1)[:, :, 2:], |
|
boxes[:, 2:]) # CxBX2 |
|
inter_x1y1 = np.maximum(np.expand_dims(chips, 1)[:, :, :2], |
|
boxes[:, :2]) # CxBx2 |
|
inter_wh = inter_x2y2 - inter_x1y1 |
|
inter_wh = np.clip(inter_wh, a_min=0, a_max=None) |
|
inter_area = inter_wh[:, :, 0] * inter_wh[:, :, 1] # CxB |
|
|
|
iob = inter_area / np.expand_dims(box_area, 0) |
|
return iob |
|
|
|
|
|
def clip_boxes(boxes, im_shape): |
|
""" |
|
Clip boxes to image boundaries. |
|
:param boxes: [N, 4] |
|
:param im_shape: tuple of 2, [h, w] |
|
:return: [N, 4] |
|
""" |
|
# x1 >= 0 |
|
boxes[:, 0] = np.clip(boxes[:, 0], 0, im_shape[1] - 1) |
|
# y1 >= 0 |
|
boxes[:, 1] = np.clip(boxes[:, 1], 0, im_shape[0] - 1) |
|
# x2 < im_shape[1] |
|
boxes[:, 2] = np.clip(boxes[:, 2], 1, im_shape[1]) |
|
# y2 < im_shape[0] |
|
boxes[:, 3] = np.clip(boxes[:, 3], 1, im_shape[0]) |
|
return boxes |
|
|
|
|
|
def transform_chip_box(gt_bbox: 'Gx4', boxes_idx: 'B', chip: '4'): |
|
boxes_idx = np.array(boxes_idx) |
|
cur_gt_bbox = gt_bbox[boxes_idx].copy() # Bx4 |
|
x1, y1, x2, y2 = chip |
|
cur_gt_bbox[:, 0] -= x1 |
|
cur_gt_bbox[:, 1] -= y1 |
|
cur_gt_bbox[:, 2] -= x1 |
|
cur_gt_bbox[:, 3] -= y1 |
|
h = y2 - y1 |
|
w = x2 - x1 |
|
cur_gt_bbox = clip_boxes(cur_gt_bbox, (h, w)) |
|
ws = (cur_gt_bbox[:, 2] - cur_gt_bbox[:, 0]).astype(np.int32) |
|
hs = (cur_gt_bbox[:, 3] - cur_gt_bbox[:, 1]).astype(np.int32) |
|
valid_idx = (ws >= 2) & (hs >= 2) |
|
return cur_gt_bbox[valid_idx], boxes_idx[valid_idx] |
|
|
|
|
|
def find_chips_to_cover_overlaped_boxes(iob, overlap_threshold): |
|
chip_ids, box_ids = np.nonzero(iob >= overlap_threshold) |
|
chip_id2overlap_box_num = np.bincount(chip_ids) # 1d array |
|
chip_id2overlap_box_num = np.pad( |
|
chip_id2overlap_box_num, (0, len(iob) - len(chip_id2overlap_box_num)), |
|
constant_values=0) |
|
|
|
chosen_chip_ids = [] |
|
while len(box_ids) > 0: |
|
value_counts = np.bincount(chip_ids) # 1d array |
|
max_count_chip_id = np.argmax(value_counts) |
|
assert max_count_chip_id not in chosen_chip_ids |
|
chosen_chip_ids.append(max_count_chip_id) |
|
|
|
box_ids_in_cur_chip = box_ids[chip_ids == max_count_chip_id] |
|
ids_not_in_cur_boxes_mask = np.logical_not( |
|
np.isin(box_ids, box_ids_in_cur_chip)) |
|
chip_ids = chip_ids[ids_not_in_cur_boxes_mask] |
|
box_ids = box_ids[ids_not_in_cur_boxes_mask] |
|
return chosen_chip_ids, chip_id2overlap_box_num |
|
|
|
|
|
def transform_chip_boxes2image_boxes(chip_boxes, chip, img_h, img_w): |
|
chip_boxes = np.array(sorted(chip_boxes, key=lambda item: -item[1])) |
|
xmin, ymin, _, _ = chip |
|
# Transform to origin image loc |
|
chip_boxes[:, 2] += xmin |
|
chip_boxes[:, 4] += xmin |
|
chip_boxes[:, 3] += ymin |
|
chip_boxes[:, 5] += ymin |
|
chip_boxes = clip_boxes(chip_boxes, (img_h, img_w)) |
|
return chip_boxes |
|
|
|
|
|
def nms(dets, thresh): |
|
"""Apply classic DPM-style greedy NMS.""" |
|
if dets.shape[0] == 0: |
|
return dets[[], :] |
|
scores = dets[:, 1] |
|
x1 = dets[:, 2] |
|
y1 = dets[:, 3] |
|
x2 = dets[:, 4] |
|
y2 = dets[:, 5] |
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
order = scores.argsort()[::-1] |
|
|
|
ndets = dets.shape[0] |
|
suppressed = np.zeros((ndets), dtype=np.int) |
|
|
|
# nominal indices |
|
# _i, _j |
|
# sorted indices |
|
# i, j |
|
# temp variables for box i's (the box currently under consideration) |
|
# ix1, iy1, ix2, iy2, iarea |
|
|
|
# variables for computing overlap with box j (lower scoring box) |
|
# xx1, yy1, xx2, yy2 |
|
# w, h |
|
# inter, ovr |
|
|
|
for _i in range(ndets): |
|
i = order[_i] |
|
if suppressed[i] == 1: |
|
continue |
|
ix1 = x1[i] |
|
iy1 = y1[i] |
|
ix2 = x2[i] |
|
iy2 = y2[i] |
|
iarea = areas[i] |
|
for _j in range(_i + 1, ndets): |
|
j = order[_j] |
|
if suppressed[j] == 1: |
|
continue |
|
xx1 = max(ix1, x1[j]) |
|
yy1 = max(iy1, y1[j]) |
|
xx2 = min(ix2, x2[j]) |
|
yy2 = min(iy2, y2[j]) |
|
w = max(0.0, xx2 - xx1 + 1) |
|
h = max(0.0, yy2 - yy1 + 1) |
|
inter = w * h |
|
ovr = inter / (iarea + areas[j] - inter) |
|
if ovr >= thresh: |
|
suppressed[j] = 1 |
|
keep = np.where(suppressed == 0)[0] |
|
dets = dets[keep, :] |
|
return dets
|
|
|