# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from paddle.io import Dataset, DataLoader import paddle import paddle.nn as nn import math import functools from paddle.nn import Conv1DTranspose, Conv2DTranspose, Conv3DTranspose, Linear # 处理图片数据:裁切、水平翻转、调整图片数据形状、归一化数据 def data_transform(img, resize_w, resize_h, load_size=286, pos=[0, 0, 256, 256], flip=True, is_image=True): if is_image: resized = img.resize((resize_w, resize_h), Image.BICUBIC) else: resized = img.resize((resize_w, resize_h), Image.NEAREST) croped = resized.crop((pos[0], pos[1], pos[2], pos[3])) fliped = ImageOps.mirror(croped) if flip else croped fliped = np.array(fliped) # transform to numpy array expanded = np.expand_dims(fliped, 2) if len(fliped.shape) < 3 else fliped transposed = np.transpose(expanded, (2, 0, 1)).astype('float32') if is_image: normalized = transposed / 255. * 2. - 1. else: normalized = transposed return normalized # 定义CoCo数据集对象 class COCODateset(Dataset): def __init__(self, opt): super(COCODateset, self).__init__() inst_dir = opt.dataroot + 'train_inst/' _, _, inst_list = next(os.walk(inst_dir)) self.inst_list = np.sort(inst_list) self.opt = opt def __getitem__(self, idx): ins = Image.open(self.opt.dataroot + 'train_inst/' + self.inst_list[ idx]) img = Image.open(self.opt.dataroot + 'train_img/' + self.inst_list[idx] .replace(".png", ".jpg")) img = img.convert('RGB') w, h = img.size resize_w, resize_h = 0, 0 if w < h: resize_w, resize_h = self.opt.load_size, int(h * self.opt.load_size / w) else: resize_w, resize_h = int(w * self.opt.load_size / h), self.opt.load_size left = random.randint(0, resize_w - self.opt.crop_size) top = random.randint(0, resize_h - self.opt.crop_size) flip = False img = data_transform( img, resize_w, resize_h, load_size=opt.load_size, pos=[ left, top, left + self.opt.crop_size, top + self.opt.crop_size ], flip=flip, is_image=True) ins = data_transform( ins, resize_w, resize_h, load_size=opt.load_size, pos=[ left, top, left + self.opt.crop_size, top + self.opt.crop_size ], flip=flip, is_image=False) return img, ins, self.inst_list[idx] def __len__(self): return len(self.inst_list) def data_onehot_pro(instance, opt): shape = instance.shape nc = opt.label_nc + 1 if opt.contain_dontcare_label \ else opt.label_nc shape[1] = nc semantics = paddle.nn.functional.one_hot(instance.astype('int64'). \ reshape([opt.batchSize, opt.crop_size, opt.crop_size]), nc). \ transpose((0, 3, 1, 2)) # edge edge = np.zeros(instance.shape, 'int64') t = instance.numpy() edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1]) edge[:, :, :, :-1] = edge[:, :, :, :-1] | ( t[:, :, :, 1:] != t[:, :, :, :-1]) edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) edge[:, :, :-1, :] = edge[:, :, :-1, :] | ( t[:, :, 1:, :] != t[:, :, :-1, :]) edge = paddle.to_tensor(edge).astype('float32') semantics = paddle.concat([semantics, edge], 1) return semantics # 设置除 spade 以外的归一化层 def build_norm_layer(norm_type='instance'): """Return a normalization layer Args: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we do not use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial( nn.BatchNorm2D, weight_attr=False, bias_attr=False) elif norm_type == 'syncbatch': norm_layer = functools.partial( nn.SyncBatchNorm, weight_attr=False, bias_attr=False) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2D, ) elif norm_type == 'spectral': norm_layer = functools.partial(Spectralnorm) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def simam(x, e_lambda=1e-4): b, c, h, w = x.shape n = w * h - 1 x_minus_mu_square = (x - x.mean(axis=[2, 3], keepdim=True))**2 y = x_minus_mu_square / (4 * (x_minus_mu_square.sum( axis=[2, 3], keepdim=True) / n + e_lambda)) + 0.5 return x * nn.functional.sigmoid(y) class Dict(dict): __setattr__ = dict.__setitem__ __getattr__ = dict.__getitem__