You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

212 lines
9.0 KiB

# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# This file is basically a copy to: https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_
from timm.models.registry import register_model
from encoder import SparseConvNeXtBlock, SparseConvNeXtLayerNorm
class ConvNeXt(nn.Module):
r""" ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` -
https://arxiv.org/pdf/2201.03545.pdf
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(self, in_chans=3, num_classes=1000,
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.,
layer_scale_init_value=1e-6, head_init_scale=1., global_pool='avg',
sparse=True,
):
super().__init__()
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
SparseConvNeXtLayerNorm(dims[0], eps=1e-6, data_format="channels_first", sparse=sparse)
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
SparseConvNeXtLayerNorm(dims[i], eps=1e-6, data_format="channels_first", sparse=sparse),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
self.drop_path_rate = drop_path_rate
self.layer_scale_init_value = layer_scale_init_value
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(4):
stage = nn.Sequential(
*[SparseConvNeXtBlock(dim=dims[i], drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value, sparse=sparse) for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
self.depths = depths
self.apply(self._init_weights)
if num_classes > 0:
self.norm = SparseConvNeXtLayerNorm(dims[-1], eps=1e-6, sparse=False) # final norm layer for LE/FT; should not be sparse
self.fc = nn.Linear(dims[-1], num_classes)
# self.fc.weight.data.mul_(head_init_scale) # todo: perform this outside
# self.fc.bias.data.mul_(head_init_scale) # todo: perform this outside
else:
self.norm = nn.Identity()
self.fc = nn.Identity()
self.with_pooling = len(global_pool) > 0
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def forward_features(self, x, pyramid: int): # pyramid: 0, 1, 2, 3, 4
ls = []
for i in range(4):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
if pyramid:
ls.append(x)
if pyramid:
for i in range(len(ls)-pyramid-1, -1, -1):
del ls[i]
return [None] * (4 - pyramid) + ls
else:
if self.with_pooling:
x = x.mean([-2, -1]) # global average pooling, (N, C, H, W) -> (N, C)
return x
def forward(self, x, pyramid=0):
if pyramid == 0:
x = self.forward_features(x, pyramid=pyramid)
x = self.fc(self.norm(x))
return x
else:
return self.forward_features(x, pyramid=pyramid)
def get_classifier(self):
return self.fc
def extra_repr(self):
return f'drop_path_rate={self.drop_path_rate}, layer_scale_init_value={self.layer_scale_init_value:g}'
def get_layer_id_and_scale_exp(self, para_name: str):
N = 12 if self.depths[-2] > 9 else 6
if para_name.startswith("downsample_layers"):
stage_id = int(para_name.split('.')[1])
if stage_id == 0:
layer_id = 0
elif stage_id == 1 or stage_id == 2:
layer_id = stage_id + 1
else: # stage_id == 3:
layer_id = N
elif para_name.startswith("stages"):
stage_id = int(para_name.split('.')[1])
block_id = int(para_name.split('.')[2])
if stage_id == 0 or stage_id == 1:
layer_id = stage_id + 1
elif stage_id == 2:
layer_id = 3 + block_id // 3
else: # stage_id == 3:
layer_id = N
else:
layer_id = N + 1 # after backbone
return layer_id, N + 1 - layer_id
model_urls = {
"convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
"convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
"convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
"convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
"convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth",
"convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth",
"convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
"convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
"convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
}
@register_model
def convnext_tiny(pretrained=False, in_22k=False, **kwargs):
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
if pretrained:
url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def convnext_small(pretrained=False, in_22k=False, **kwargs):
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
if pretrained:
url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
@register_model
def convnext_base(pretrained=False, in_22k=False, **kwargs):
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
if pretrained:
url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
@register_model
def convnext_large(pretrained=False, in_22k=False, **kwargs):
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
if pretrained:
url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
@register_model
def convnext_xlarge(pretrained=False, in_22k=False, **kwargs):
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
if pretrained:
assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True"
url = model_urls['convnext_xlarge_22k']
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
if __name__ == '__main__':
from timm.models import create_model
c = create_model('convnext_small', sparse=False)
with torch.no_grad():
x = torch.rand(2, 3, 224, 224)
print(c(x).shape)
print([None if f is None else f.shape for f in c(x, pyramid=1)])
print([None if f is None else f.shape for f in c(x, pyramid=2)])
print([None if f is None else f.shape for f in c(x, pyramid=3)])
print([None if f is None else f.shape for f in c(x, pyramid=4)])