You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
4.9 KiB
125 lines
4.9 KiB
# Copyright (c) ByteDance, Inc. and its affiliates. |
|
# All rights reserved. |
|
# |
|
# This source code is licensed under the license found in the |
|
# LICENSE file in the root directory of this source tree. |
|
# |
|
# This file is basically a copy of: https://github.com/facebookresearch/ConvNeXt/blob/06f7b05f922e21914916406141f50f82b4a15852/models/convnext.py |
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
from timm.models.layers import trunc_normal_ |
|
from timm.models.registry import register_model |
|
|
|
from encoder import SparseConvNeXtBlock, SparseConvNeXtLayerNorm |
|
|
|
|
|
class ConvNeXt(nn.Module): |
|
r""" ConvNeXt |
|
A PyTorch impl of : `A ConvNet for the 2020s` - |
|
https://arxiv.org/pdf/2201.03545.pdf |
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. |
|
""" |
|
|
|
def __init__(self, in_chans=3, num_classes=1000, |
|
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., |
|
layer_scale_init_value=1e-6, head_init_scale=1., global_pool='avg', |
|
sparse=True, |
|
): |
|
super().__init__() |
|
self.dims: List[int] = dims |
|
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers |
|
stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), |
|
SparseConvNeXtLayerNorm(dims[0], eps=1e-6, data_format="channels_first", sparse=sparse) |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
SparseConvNeXtLayerNorm(dims[i], eps=1e-6, data_format="channels_first", sparse=sparse), |
|
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks |
|
self.drop_path_rate = drop_path_rate |
|
self.layer_scale_init_value = layer_scale_init_value |
|
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.Sequential( |
|
*[SparseConvNeXtBlock(dim=dims[i], drop_path=dp_rates[cur + j], |
|
layer_scale_init_value=layer_scale_init_value, sparse=sparse) for j in range(depths[i])] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
self.depths = depths |
|
|
|
self.apply(self._init_weights) |
|
if num_classes > 0: |
|
self.norm = SparseConvNeXtLayerNorm(dims[-1], eps=1e-6, sparse=False) # final norm layer for LE/FT; should not be sparse |
|
self.fc = nn.Linear(dims[-1], num_classes) |
|
else: |
|
self.norm = nn.Identity() |
|
self.fc = nn.Identity() |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def get_downsample_ratio(self) -> int: |
|
return 32 |
|
|
|
def get_feature_map_channels(self) -> List[int]: |
|
return self.dims |
|
|
|
def forward(self, x, hierarchical=False): |
|
if hierarchical: |
|
ls = [] |
|
for i in range(4): |
|
x = self.downsample_layers[i](x) |
|
x = self.stages[i](x) |
|
ls.append(x) |
|
return ls |
|
else: |
|
return self.fc(self.norm(x.mean([-2, -1]))) # (B, C, H, W) =mean=> (B, C) =norm&fc=> (B, NumCls) |
|
|
|
def get_classifier(self): |
|
return self.fc |
|
|
|
def extra_repr(self): |
|
return f'drop_path_rate={self.drop_path_rate}, layer_scale_init_value={self.layer_scale_init_value:g}' |
|
|
|
|
|
@register_model |
|
def convnext_tiny(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_small(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_base(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_large(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) |
|
return model |
|
|
|
|