You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
6.7 KiB
112 lines
6.7 KiB
## Preparation for ImageNet-1k pretraining |
|
|
|
See [/INSTALL.md](/INSTALL.md) to prepare `pip` dependencies and the ImageNet dataset. |
|
|
|
**Note: for network definitions, we directly use `timm.models.ResNet` and [official ConvNeXt](https://github.com/facebookresearch/ConvNeXt/blob/048efcea897d999aed302f2639b6270aedf8d4c8/models/convnext.py).** |
|
|
|
|
|
## Tutorial for pretraining your own CNN model |
|
|
|
See [/pretrain/models/custom.py](/pretrain/models/custom.py). The things needed to do is: |
|
|
|
- implementing member function `get_downsample_ratio` in [/pretrain/models/custom.py line20](/pretrain/models/custom.py#L20). |
|
- implementing member function `get_feature_map_channels` in [/pretrain/models/custom.py line29](/pretrain/models/custom.py#L29). |
|
- implementing member function `forward` in [/pretrain/models/custom.py line38](/pretrain/models/custom.py#L38). |
|
- define `your_convnet(...)` with `@register_model` in [/pretrain/models/custom.py line54](/pretrain/models/custom.py#L53-L54). |
|
- add default kwargs of `your_convnet(...)` in [/pretrain/models/\_\_init\_\_.py line34](/pretrain/models/__init__.py#L34). |
|
|
|
Then you can use `--model=your_convnet` in the pretraining script. |
|
|
|
|
|
## Tutorial for pretraining your own dataset |
|
|
|
Replace the function `build_dataset_to_pretrain` in [line54-75 of /pretrain/utils/imagenet.py](/pretrain/utils/imagenet.py#L54-L75) to yours. |
|
This function should return a `Dataset` object. You may use args like `args.data_path` and `args.input_size` to help build your dataset. And when running experiment you can use `--data_path=... --input_size=...` to specify them. |
|
Note the batch size `--bs` is the total batch size of all GPU, which may also need to be tuned. |
|
|
|
|
|
## Debug on 1 GPU (without DistributedDataParallel) |
|
|
|
Use a small batch size `--bs=32` for avoiding OOM. |
|
|
|
```shell script |
|
python3 main.py --exp_name=debug --data_path=/path/to/imagenet --model=resnet50 --bs=32 |
|
``` |
|
|
|
|
|
## Pretraining Any Model on ImageNet-1k (224x224) |
|
|
|
For pretraining, run [/pretrain/main.py](/pretrain/main.py) with `torchrun`. |
|
**It is required to specify** the ImageNet data folder (`--data_path`), your experiment name & log dir (`--exp_name` and `--exp_dir`, automatically created if not exists), and the model name (`--model`, valid choices see the keys of 'pretrain_default_model_kwargs' in [/pretrain/models/\_\_init\_\_.py line34](/pretrain/models/__init__.py#L34)). |
|
|
|
We use the **same** pretraining configurations (lr, batch size, etc.) for all models (ResNets and ConvNeXts) in 224 pretraining. |
|
Their **names** and **default values** are in [/pretrain/utils/arg_util.py line23-44](/pretrain/utils/arg_util.py#L23-L44). |
|
All these default configurations (like batch size 4096) would be used, unless you specify some like `--bs=512`. |
|
|
|
**Note: the batch size `--bs` is the total batch size of all GPU, and the learning rate `--base_lr` is the base lr. The actual lr would be `base_lr * bs / 256`, as in [/pretrain/utils/arg_util.py line131](/pretrain/utils/arg_util.py#L131). So don't use `--lr` to specify a lr (will be ignored)** |
|
|
|
Here is an example to pretrain a ResNet50 on an 8-GPU single machine (we use DistributedDataParallel), overwriting the default batch size to 512: |
|
```shell script |
|
$ cd /path/to/SparK/pretrain |
|
$ torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr=localhost --master_port=<some_port> main.py \ |
|
--data_path=/path/to/imagenet --exp_name=<your_exp_name> --exp_dir=/path/to/logdir \ |
|
--model=resnet50 --bs=512 |
|
``` |
|
|
|
For multiple machines, change the `--nnodes` and `--master_addr` to your configurations. E.g.: |
|
```shell script |
|
$ torchrun --nproc_per_node=8 --nnodes=<your_nnodes> --node_rank=<rank_starts_from_0> --master_address=<some_address> --master_port=<some_port> main.py \ |
|
... |
|
``` |
|
|
|
## Pretraining ConvNeXt-Large on ImageNet-1k (384x384) |
|
|
|
For 384 pretraining we use a larger mask ratio (0.75), a half batch size (2048), and a double base learning rate (4e-4): |
|
|
|
```shell script |
|
$ cd /path/to/SparK/pretrain |
|
$ torchrun --nproc_per_node=8 --nnodes=<your_nnodes> --node_rank=<rank_starts_from_0> --master_address=<some_address> --master_port=<some_port> main.py \ |
|
--data_path=/path/to/imagenet --exp_name=<your_exp_name> --exp_dir=/path/to/logdir \ |
|
--model=convnext_large --input_size=384 --mask=0.75 --bs=2048 --base_lr=4e-4 |
|
``` |
|
|
|
## Logging |
|
|
|
See files under `--exp_dir` to track your experiment: |
|
|
|
- `<model>_still_pretraining.pth`: saves model and optimizer states, current epoch, current reconstruction loss, etc; can be used to resume pretraining |
|
- `<model>_1kpretrained.pth`: can be used for downstream finetuning |
|
- `pretrain_log.txt`: records some important information such as: |
|
- `git_commit_id`: git version |
|
- `cmd`: all arguments passed to the script |
|
|
|
It also reports the loss and remaining pretraining time at each epoch. |
|
|
|
- `tensorboard_log/`: saves a lot of tensorboard logs, you can visualize loss values, learning rates, gradient norms and more things via `tensorboard --logdir /path/to/this/tensorboard_log/ --port 23333`. |
|
- `stdout_backup.txt` and `stderr_backup.txt`: will save all output to stdout/stderr |
|
|
|
|
|
## Resuming |
|
|
|
Add the arg `--resume_from=path/to/<model>_still_pretraining.pth` to resume pretraining. |
|
|
|
|
|
## Regarding sparse convolution |
|
|
|
We do not use sparse convolutions in this pytorch implementation, due to their limited optimization on modern hardware. |
|
As can be found in [/pretrain/encoder.py](/pretrain/encoder.py), we use masked dense convolution to simulate submanifold sparse convolution. |
|
We also define some sparse pooling or normalization layers in [/pretrain/encoder.py](/pretrain/encoder.py). |
|
All these "sparse" layers are implemented through pytorch built-in operators. |
|
|
|
|
|
## Some details: how we mask images and how to set the patch size |
|
|
|
In SparK, the mask patch size **equals to** the downsample ratio of the CNN model (so there is no configuration like `--patch_size=32`). |
|
|
|
Here is the reason: when we do mask, we: |
|
|
|
1. first generate the binary mask for the **smallest** resolution feature map, i.e., generate the `_cur_active` or `active_b1ff` in [/pretrain/spark.py line86-87](/pretrain/spark.py#L86-L87), which is a `torch.BoolTensor` shaped as `[B, 1, fmap_h, fmap_w]`, and would be used to mask the smallest feature map. |
|
3. then progressively upsample it (i.e., expand its 2nd and 3rd dimensions by calling `repeat_interleave(..., 2)` and `repeat_interleave(..., 3)` in [/pretrain/encoder.py line16](/pretrain/encoder.py#L16)), to mask those feature maps ([`x` in line21](/pretrain/encoder.py#L21)) with larger resolutions . |
|
|
|
So if you want a patch size of 16 or 8, you should actually define a new CNN model with a downsample ratio of 16 or 8. |
|
See [Tutorial for pretraining your own CNN model (above)](https://github.com/keyu-tian/SparK/tree/main/pretrain/#tutorial-for-pretraining-your-own-cnn-model).
|
|
|