You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
keyu-tian a64bdf729f [upd] READMEs, add new recorded video on bilibili 2 years ago
..
models [upd] update /pretrain/README.md 2 years ago
utils [upd] add support for 1GPU debug and customized dataset 2 years ago
viz_imgs [upd] README 2 years ago
README.md [upd] READMEs, add new recorded video on bilibili 2 years ago
decoder.py [upd] 1. refactor a lot to simplify the pretraining codes; 2. add tutorial for customizing your own CNN model; 3. update some READMEs 2 years ago
dist.py [upd] add support for 1GPU debug and customized dataset 2 years ago
encoder.py [upd] make it more easier to modify for regtangle input (H != W); remove main.sh and launch.py, simplify the command for exp (use torchrun directly) 2 years ago
main.py [fix] DDP error 2 years ago
requirements.txt [add] add demo: pretrain/viz_reconstruction.ipynb 2 years ago
sampler.py [upd] 1. refactor a lot to simplify the pretraining codes; 2. add tutorial for customizing your own CNN model; 3. update some READMEs 2 years ago
spark.py [upd] make it more easier to modify for regtangle input (H != W); remove main.sh and launch.py, simplify the command for exp (use torchrun directly) 2 years ago
viz_reconstruction.ipynb [upd] vis for resnets 2 years ago
viz_spconv.ipynb [upd] README 2 years ago

README.md

Preparation for ImageNet-1k pretraining

See /INSTALL.md to prepare pip dependencies and the ImageNet dataset.

Note: for network definitions, we directly use timm.models.ResNet and official ConvNeXt.

Tutorial for pretraining your own CNN model

See /pretrain/models/custom.py. The things needed to do is:

Then you can use --model=your_convnet in the pretraining script.

Tutorial for pretraining your own dataset

Replace the function build_dataset_to_pretrain in line54-75 of /pretrain/utils/imagenet.py to yours. This function should return a Dataset object. You may use args like args.data_path and args.input_size to help build your dataset. And when running experiment you can use --data_path=... --input_size=... to specify them. Note the batch size --bs is the total batch size of all GPU, which may also need to be tuned.

Debug on 1 GPU (without DistributedDataParallel)

Use a small batch size --bs=32 for avoiding OOM.

python3 main.py --exp_name=debug --data_path=/path/to/imagenet --model=resnet50 --bs=32

Pretraining Any Model on ImageNet-1k (224x224)

For pretraining, run /pretrain/main.py with torchrun. It is required to specify the ImageNet data folder (--data_path), your experiment name & log dir (--exp_name and --exp_dir, automatically created if not exists), and the model name (--model, valid choices see the keys of 'pretrain_default_model_kwargs' in /pretrain/models/__init__.py line34).

We use the same pretraining configurations (lr, batch size, etc.) for all models (ResNets and ConvNeXts) in 224 pretraining. Their names and default values are in /pretrain/utils/arg_util.py line23-44. All these default configurations (like batch size 4096) would be used, unless you specify some like --bs=512.

Note: the batch size --bs is the total batch size of all GPU, and the learning rate --base_lr is the base lr. The actual lr would be base_lr * bs / 256, as in /pretrain/utils/arg_util.py line131. So don't use --lr to specify a lr (will be ignored)

Here is an example to pretrain a ResNet50 on an 8-GPU single machine (we use DistributedDataParallel), overwriting the default batch size to 512:

$ cd /path/to/SparK/pretrain
$ torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr=localhost --master_port=<some_port> main.py \
  --data_path=/path/to/imagenet --exp_name=<your_exp_name> --exp_dir=/path/to/logdir \
  --model=resnet50 --bs=512

For multiple machines, change the --nnodes and --master_addr to your configurations. E.g.:

$ torchrun --nproc_per_node=8 --nnodes=<your_nnodes> --node_rank=<rank_starts_from_0> --master_address=<some_address> --master_port=<some_port> main.py \
  ...

Pretraining ConvNeXt-Large on ImageNet-1k (384x384)

For 384 pretraining we use a larger mask ratio (0.75), a half batch size (2048), and a double base learning rate (4e-4):

$ cd /path/to/SparK/pretrain
$ torchrun --nproc_per_node=8 --nnodes=<your_nnodes> --node_rank=<rank_starts_from_0> --master_address=<some_address> --master_port=<some_port> main.py \
  --data_path=/path/to/imagenet --exp_name=<your_exp_name> --exp_dir=/path/to/logdir \
  --model=convnext_large --input_size=384 --mask=0.75 --bs=2048 --base_lr=4e-4

Logging

See files under --exp_dir to track your experiment:

  • <model>_still_pretraining.pth: saves model and optimizer states, current epoch, current reconstruction loss, etc; can be used to resume pretraining

  • <model>_1kpretrained.pth: can be used for downstream finetuning

  • pretrain_log.txt: records some important information such as:

    • git_commit_id: git version
    • cmd: all arguments passed to the script

    It also reports the loss and remaining pretraining time at each epoch.

  • tensorboard_log/: saves a lot of tensorboard logs, you can visualize loss values, learning rates, gradient norms and more things via tensorboard --logdir /path/to/this/tensorboard_log/ --port 23333.

  • stdout_backup.txt and stderr_backup.txt: will save all output to stdout/stderr

Resuming

Add the arg --resume_from=path/to/<model>_still_pretraining.pth to resume pretraining.

Regarding sparse convolution

We do not use sparse convolutions in this pytorch implementation, due to their limited optimization on modern hardware. As can be found in /pretrain/encoder.py, we use masked dense convolution to simulate submanifold sparse convolution. We also define some sparse pooling or normalization layers in /pretrain/encoder.py. All these "sparse" layers are implemented through pytorch built-in operators.

Some details: how we mask images and how to set the patch size

In SparK, the mask patch size equals to the downsample ratio of the CNN model (so there is no configuration like --patch_size=32).

Here is the reason: when we do mask, we:

  1. first generate the binary mask for the smallest resolution feature map, i.e., generate the _cur_active or active_b1ff in /pretrain/spark.py line86-87, which is a torch.BoolTensor shaped as [B, 1, fmap_h, fmap_w], and would be used to mask the smallest feature map.
  2. then progressively upsample it (i.e., expand its 2nd and 3rd dimensions by calling repeat_interleave(..., 2) and repeat_interleave(..., 3) in /pretrain/encoder.py line16), to mask those feature maps (x in line21) with larger resolutions .

So if you want a patch size of 16 or 8, you should actually define a new CNN model with a downsample ratio of 16 or 8. See Tutorial for pretraining your own CNN model (above).