You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

333 lines
11 KiB

# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import functools
import os
import subprocess
import sys
import time
from collections import defaultdict, deque
from typing import Iterator
import numpy as np
import pytz
import torch
from torch.utils.tensorboard import SummaryWriter
import dist
os_system = functools.partial(subprocess.call, shell=True)
os_system_get_stdout = lambda cmd: subprocess.run(cmd, shell=True, stdout=subprocess.PIPE).stdout.decode('utf-8')
def os_system_get_stdout_stderr(cmd):
sp = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return sp.stdout.decode('utf-8'), sp.stderr.decode('utf-8')
def is_pow2n(x):
return x > 0 and (x & (x - 1) == 0)
def time_str(for_dirname=False):
return datetime.datetime.now(tz=pytz.timezone('Asia/Shanghai')).strftime('%m-%d_%H-%M-%S' if for_dirname else '[%m-%d %H:%M:%S]')
def init_distributed_environ(exp_dir):
dist.initialize()
dist.barrier()
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.deterministic = False
_set_print_only_on_master_proc(is_master=dist.is_local_master())
if dist.is_local_master() and len(exp_dir):
sys.stdout, sys.stderr = _SyncPrintToFile(exp_dir, stdout=True), _SyncPrintToFile(exp_dir, stdout=False)
def _set_print_only_on_master_proc(is_master):
import builtins as __builtin__
builtin_print = __builtin__.print
def prt(msg, *args, **kwargs):
force = kwargs.pop('force', False)
clean = kwargs.pop('clean', False)
deeper = kwargs.pop('deeper', False)
if is_master or force:
if not clean:
f_back = sys._getframe().f_back
if deeper and f_back.f_back is not None:
f_back = f_back.f_back
file_desc = f'{f_back.f_code.co_filename:24s}'[-24:]
msg = f'{time_str()} ({file_desc}, line{f_back.f_lineno:-4d})=> {msg}'
builtin_print(msg, *args, **kwargs)
__builtin__.print = prt
class _SyncPrintToFile(object):
def __init__(self, exp_dir, stdout=True):
self.terminal = sys.stdout if stdout else sys.stderr
fname = os.path.join(exp_dir, 'stdout_backup.txt' if stdout else 'stderr_backup.txt')
self.log = open(fname, 'w')
self.log.flush()
def write(self, message):
self.terminal.write(message)
self.log.write(message)
self.log.flush()
def flush(self):
self.terminal.flush()
self.log.flush()
class TensorboardLogger(object):
def __init__(self, log_dir, is_master, prefix='pt'):
self.is_master = is_master
self.writer = SummaryWriter(log_dir=log_dir) if self.is_master else None
self.step = 0
self.prefix = prefix
self.log_freq = 300
def set_step(self, step=None):
if step is not None:
self.step = step
else:
self.step += 1
def get_loggable(self, step=None):
if step is None: # iter wise
step = self.step
loggable = step % self.log_freq == 0
else: # epoch wise
loggable = True
return step, (loggable and self.is_master)
def update(self, head='scalar', step=None, **kwargs):
step, loggable = self.get_loggable(step)
if loggable:
head = f'{self.prefix}_{head}'
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.writer.add_scalar(head + "/" + k, v, step)
def log_distribution(self, tag, values, step=None):
step, loggable = self.get_loggable(step)
if loggable:
if not isinstance(values, torch.Tensor):
values = torch.tensor(values)
self.writer.add_histogram(tag=tag, values=values, global_step=step)
def log_image(self, tag, img, step=None, dataformats='NCHW'):
step, loggable = self.get_loggable(step)
if loggable:
# img = img.cpu().numpy()
self.writer.add_image(tag, img, step, dataformats=dataformats)
def flush(self):
if self.is_master: self.writer.flush()
def close(self):
if self.is_master: self.writer.close()
def save_checkpoint(save_to, args, epoch, performance_desc, model_without_ddp_state, optimizer_state):
checkpoint_path = os.path.join(args.exp_dir, save_to)
if dist.is_local_master():
to_save = {
'args': str(args),
'arch': args.model,
'epoch': epoch,
'performance_desc': performance_desc,
'module': model_without_ddp_state,
'optimizer': optimizer_state,
'is_pretrain': True,
}
torch.save(to_save, checkpoint_path)
def save_checkpoint_for_finetune(save_to, args, sp_cnn_state):
checkpoint_path = os.path.join(args.exp_dir, save_to)
if dist.is_local_master():
to_save = {
'arch': args.model,
'module': sp_cnn_state,
'is_pretrain': False,
}
torch.save(to_save, checkpoint_path)
def load_checkpoint(resume_from, model_without_ddp, optimizer):
if len(resume_from) == 0:
return 0, '[no performance_desc]'
print(f'[try to resume from file `{resume_from}`]')
checkpoint = torch.load(resume_from, map_location='cpu')
ep_start, performance_desc = checkpoint.get('epoch', -1) + 1, checkpoint.get('performance_desc', '[no performance_desc]')
missing, unexpected = model_without_ddp.load_state_dict(checkpoint['module'], strict=False)
print(f'[load_checkpoint] missing_keys={missing}')
print(f'[load_checkpoint] unexpected_keys={unexpected}')
print(f'[load_checkpoint] ep_start={ep_start}, performance_desc={performance_desc}')
if 'optimizer' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
return ep_start, performance_desc
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.allreduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, max_iters, itrt, print_freq, header=None):
print_iters = set(np.linspace(0, max_iters - 1, print_freq, dtype=int).tolist())
if not header:
header = ''
start_time = time.time()
end = time.time()
self.iter_time = SmoothedValue(fmt='{avg:.4f}')
self.data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(max_iters))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'iter: {time}s',
'data: {data}s'
]
log_msg = self.delimiter.join(log_msg)
if isinstance(itrt, Iterator) and not hasattr(itrt, 'preload') and not hasattr(itrt, 'set_epoch'):
for i in range(max_iters):
obj = next(itrt)
self.data_time.update(time.time() - end)
yield obj
self.iter_time.update(time.time() - end)
if i in print_iters:
eta_seconds = self.iter_time.global_avg * (max_iters - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(log_msg.format(
i, max_iters, eta=eta_string,
meters=str(self),
time=str(self.iter_time), data=str(self.data_time)))
end = time.time()
else:
for i, obj in enumerate(itrt):
self.data_time.update(time.time() - end)
yield obj
self.iter_time.update(time.time() - end)
if i in print_iters:
eta_seconds = self.iter_time.global_avg * (max_iters - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(log_msg.format(
i, max_iters, eta=eta_string,
meters=str(self),
time=str(self.iter_time), data=str(self.data_time)))
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.3f} s / it)'.format(
header, total_time_str, total_time / max_iters))