You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
53 lines
2.3 KiB
53 lines
2.3 KiB
# Copyright (c) ByteDance, Inc. and its affiliates. |
|
# All rights reserved. |
|
# |
|
# This source code is licensed under the license found in the |
|
# LICENSE file in the root directory of this source tree. |
|
|
|
import math |
|
from pprint import pformat |
|
|
|
|
|
def lr_wd_annealing(optimizer, peak_lr, wd, wd_end, cur_it, wp_it, max_it): |
|
wp_it = round(wp_it) |
|
if cur_it < wp_it: |
|
cur_lr = 0.005 * peak_lr + 0.995 * peak_lr * cur_it / wp_it |
|
else: |
|
ratio = (cur_it - wp_it) / (max_it - 1 - wp_it) |
|
cur_lr = 0.001 * peak_lr + 0.999 * peak_lr * (0.5 + 0.5 * math.cos(math.pi * ratio)) |
|
|
|
ratio = cur_it / (max_it - 1) |
|
cur_wd = wd_end + (wd - wd_end) * (0.5 + 0.5 * math.cos(math.pi * ratio)) |
|
|
|
min_lr, max_lr = cur_lr, cur_lr |
|
min_wd, max_wd = cur_wd, cur_wd |
|
for param_group in optimizer.param_groups: |
|
scaled_lr = param_group['lr'] = cur_lr * param_group.get('lr_scale', 1) # 'lr_scale' could be assigned |
|
min_lr, max_lr = min(min_lr, scaled_lr), max(max_lr, scaled_lr) |
|
scaled_wd = param_group['weight_decay'] = cur_wd * param_group.get('weight_decay_scale', 1) # 'weight_decay_scale' could be assigned |
|
min_wd, max_wd = min(min_wd, scaled_wd), max(max_wd, scaled_wd) |
|
return min_lr, max_lr, min_wd, max_wd |
|
|
|
|
|
def get_param_groups(model, nowd_keys=()): |
|
para_groups, para_groups_dbg = {}, {} |
|
|
|
for name, para in model.named_parameters(): |
|
if not para.requires_grad: |
|
continue # frozen weights |
|
if len(para.shape) == 1 or name.endswith('.bias') or any(k in name for k in nowd_keys): |
|
wd_scale, group_name = 0., 'no_decay' |
|
else: |
|
wd_scale, group_name = 1., 'decay' |
|
|
|
if group_name not in para_groups: |
|
para_groups[group_name] = {'params': [], 'weight_decay_scale': wd_scale, 'lr_scale': 1.} |
|
para_groups_dbg[group_name] = {'params': [], 'weight_decay_scale': wd_scale, 'lr_scale': 1.} |
|
para_groups[group_name]['params'].append(para) |
|
para_groups_dbg[group_name]['params'].append(name) |
|
|
|
for g in para_groups_dbg.values(): |
|
g['params'] = pformat(', '.join(g['params']), width=200) |
|
|
|
print(f'[get_ft_param_groups] param groups = \n{pformat(para_groups_dbg, indent=2, width=250)}\n') |
|
return list(para_groups.values())
|
|
|