You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

143 lines
4.1 KiB

# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import sys
from tap import Tap
import dist
class Args(Tap):
# environment
exp_name: str
exp_dir: str
data_path: str
resume_from: str = '' # resume from some checkpoint.pth
seed: int = 1
# SparK hyperparameters
mask: float = 0.6
hierarchy: int = 4
# encoder hyperparameters
model: str = 'res50'
model_alias: str = 'res50'
input_size: int = 224
sbn: bool = True
# data hyperparameters
bs: int = 4096
dataloader_workers: int = 8
# pre-training hyperparameters
dp: float = 0.0
base_lr: float = 2e-4
wd: float = 0.04
wde: float = 0.2
ep: int = 1600
wp_ep: int = 40
clip: int = 5.
opt: str = 'lamb'
ada: float = 0.
# NO NEED TO SPECIFIED; each of these args would be updated in runtime automatically
lr: float = None
batch_size_per_gpu: int = 0
glb_batch_size: int = 0
densify_norm: str = ''
device: str = 'cpu'
local_rank: int = 0
cmd: str = ' '.join(sys.argv[1:])
commit_id: str = os.popen(f'git rev-parse HEAD').read().strip() or '[unknown]'
commit_msg: str = (os.popen(f'git log -1').read().strip().splitlines() or ['[unknown]'])[-1].strip()
last_loss: float = 0.
cur_ep: str = ''
remain_time: str = ''
finish_time: str = ''
first_logging: bool = True
log_txt_name: str = '{args.exp_dir}/pretrain_log.txt'
tb_lg_dir: str = '' # tensorboard log directory
@property
def is_convnext(self):
return 'convnext' in self.model or 'cnx' in self.model
@property
def is_resnet(self):
return 'resnet' in self.model or 'res' in self.model_alias
def log_epoch(self):
if not dist.is_local_master():
return
if self.first_logging:
self.first_logging = False
with open(self.log_txt_name, 'w') as fp:
json.dump({
'name': self.exp_name, 'cmd': self.cmd, 'git_commit_id': self.commit_id, 'git_commit_msg': self.commit_msg,
'model': self.model,
}, fp)
fp.write('\n\n')
with open(self.log_txt_name, 'a') as fp:
json.dump({
'cur_ep': self.cur_ep,
'last_L': self.last_loss,
'rema': self.remain_time, 'fini': self.finish_time,
}, fp)
fp.write('\n')
def init_dist_and_get_args():
from utils import misc
from models import model_alias_to_fullname, model_fullname_to_alias
# initialize
args = Args(explicit_bool=True).parse_args()
e = os.path.abspath(args.exp_dir)
d, e = os.path.dirname(e), os.path.basename(e)
e = ''.join(ch if (ch.isalnum() or ch == '-') else '_' for ch in e)
args.exp_dir = os.path.join(d, e)
os.makedirs(args.exp_dir, exist_ok=True)
args.log_txt_name = os.path.join(args.exp_dir, 'pretrain_log.txt')
args.tb_lg_dir = args.tb_lg_dir or os.path.join(args.exp_dir, 'tensorboard_log')
try:
os.makedirs(args.tb_lg_dir, exist_ok=True)
except:
pass
misc.init_distributed_environ(exp_dir=args.exp_dir)
# update args
if args.model in model_alias_to_fullname.keys():
args.model = model_alias_to_fullname[args.model]
args.model_alias = model_fullname_to_alias[args.model]
args.first_logging = True
args.device = dist.get_device()
args.batch_size_per_gpu = args.bs // dist.get_world_size()
args.glb_batch_size = args.batch_size_per_gpu * dist.get_world_size()
if args.is_resnet:
args.ada = args.ada or 0.95
args.densify_norm = 'bn'
if args.is_convnext:
args.ada = args.ada or 0.999
args.densify_norm = 'ln'
args.opt = args.opt.lower()
args.lr = args.base_lr * args.glb_batch_size / 256
args.wde = args.wde or args.wd
if args.hierarchy < 1:
args.hierarchy = 1
return args