You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
9.3 KiB
201 lines
9.3 KiB
# Copyright (c) ByteDance, Inc. and its affiliates. |
|
# All rights reserved. |
|
# |
|
# This source code is licensed under the license found in the |
|
# LICENSE file in the root directory of this source tree. |
|
# |
|
# This file is exactly the same as: https://github.com/facebookresearch/ConvNeXt/blob/06f7b05f922e21914916406141f50f82b4a15852/models/convnext.py |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.models.layers import trunc_normal_, DropPath |
|
from timm.models.registry import register_model |
|
|
|
class Block(nn.Module): |
|
r""" ConvNeXt Block. There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
We use (2) as we find it slightly faster in PyTorch |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
""" |
|
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv |
|
self.norm = LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), |
|
requires_grad=True) if layer_scale_init_value > 0 else None |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
class ConvNeXt(nn.Module): |
|
r""" ConvNeXt |
|
A PyTorch impl of : `A ConvNet for the 2020s` - |
|
https://arxiv.org/pdf/2201.03545.pdf |
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. |
|
""" |
|
def __init__(self, in_chans=3, num_classes=1000, |
|
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., |
|
layer_scale_init_value=1e-6, head_init_scale=1., |
|
): |
|
super().__init__() |
|
|
|
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers |
|
stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), |
|
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") |
|
) |
|
self.downsample_layers.append(stem) |
|
for i in range(3): |
|
downsample_layer = nn.Sequential( |
|
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), |
|
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), |
|
) |
|
self.downsample_layers.append(downsample_layer) |
|
|
|
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks |
|
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for i in range(4): |
|
stage = nn.Sequential( |
|
*[Block(dim=dims[i], drop_path=dp_rates[cur + j], |
|
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] |
|
) |
|
self.stages.append(stage) |
|
cur += depths[i] |
|
|
|
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer |
|
self.head = nn.Linear(dims[-1], num_classes) |
|
|
|
self.apply(self._init_weights) |
|
self.head.weight.data.mul_(head_init_scale) |
|
self.head.bias.data.mul_(head_init_scale) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward_features(self, x): |
|
for i in range(4): |
|
x = self.downsample_layers[i](x) |
|
x = self.stages[i](x) |
|
return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
class LayerNorm(nn.Module): |
|
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
with shape (batch_size, channels, height, width). |
|
""" |
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError |
|
self.normalized_shape = (normalized_shape, ) |
|
|
|
def forward(self, x): |
|
if self.data_format == "channels_last": |
|
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
elif self.data_format == "channels_first": |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
model_urls = { |
|
"convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", |
|
"convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth", |
|
"convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth", |
|
"convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth", |
|
"convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth", |
|
"convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth", |
|
"convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", |
|
"convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", |
|
"convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", |
|
} |
|
|
|
@register_model |
|
def convnext_tiny(pretrained=False,in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) |
|
model.load_state_dict(checkpoint["model"]) |
|
return model |
|
|
|
@register_model |
|
def convnext_small(pretrained=False,in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") |
|
model.load_state_dict(checkpoint["model"]) |
|
return model |
|
|
|
@register_model |
|
def convnext_base(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") |
|
model.load_state_dict(checkpoint["model"]) |
|
return model |
|
|
|
@register_model |
|
def convnext_large(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) |
|
if pretrained: |
|
url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") |
|
model.load_state_dict(checkpoint["model"]) |
|
return model |
|
|
|
@register_model |
|
def convnext_xlarge(pretrained=False, in_22k=False, **kwargs): |
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs) |
|
if pretrained: |
|
assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True" |
|
url = model_urls['convnext_xlarge_22k'] |
|
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") |
|
model.load_state_dict(checkpoint["model"]) |
|
return model
|
|
|