You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1.7 KiB
1.7 KiB
Preparation for pre-training & ImageNet fine-tuning
Pip dependencies
- Prepare a python environment, e.g.:
$ conda create -n spark python=3.8 -y
$ conda activate spark
- Install
PyTorch
andtimm
(better to usetorch~=1.10
,torchvision~=0.11
, andtimm==0.5.4
) then other python packages:
$ pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html
$ pip install timm==0.5.4
$ pip install -r requirements.txt
It is highly recommended to install these versions to ensure a consistent environment for re-implementation.
ImageNet preparation
Prepare the ImageNet-1k dataset
- assume the dataset is in
/path/to/imagenet
- check the file path, it should look like this:
/path/to/imagenet/:
train/:
class1:
a_lot_images.jpeg
class2:
a_lot_images.jpeg
val/:
class1:
a_lot_images.jpeg
class2:
a_lot_images.jpeg
- that argument of
--data_path=/path/to/imagenet
should be passed to the training script introduced later
PS:
In our implementation, we use pytorch built-in operators to simulate the submanifold sparse convolution in encoder.py for generality, due to the fact that many convolution operators (e.g., grouped conv and dilated conv) do not yet have efficient sparse implementations on today's hardware. If you want to try those sparse convolution, you may refer to this sparse convolution library or MinkowskiEngine.