You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
2.7 KiB
74 lines
2.7 KiB
# Copyright (c) ByteDance, Inc. and its affiliates. |
|
# All rights reserved. |
|
# |
|
# This source code is licensed under the license found in the |
|
# LICENSE file in the root directory of this source tree. |
|
|
|
import math |
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
from timm.models.layers import trunc_normal_ |
|
|
|
from utils.misc import is_pow2n |
|
|
|
|
|
class UNetBlock(nn.Module): |
|
def __init__(self, cin, cout, bn2d): |
|
""" |
|
a UNet block with 2x up sampling |
|
""" |
|
super().__init__() |
|
self.up_sample = nn.ConvTranspose2d(cin, cin, kernel_size=4, stride=2, padding=1, bias=True) |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=False), bn2d(cin), nn.ReLU6(inplace=True), |
|
nn.Conv2d(cin, cout, kernel_size=3, stride=1, padding=1, bias=False), bn2d(cout), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.up_sample(x) |
|
return self.conv(x) |
|
|
|
|
|
class LightDecoder(nn.Module): |
|
def __init__(self, up_sample_ratio, width=768, sbn=True): |
|
super().__init__() |
|
self.width = width |
|
assert is_pow2n(up_sample_ratio) |
|
n = round(math.log2(up_sample_ratio)) |
|
channels = [self.width // 2 ** i for i in range(n + 1)] |
|
bn2d = nn.SyncBatchNorm if sbn else nn.BatchNorm2d |
|
self.dec = nn.ModuleList([UNetBlock(cin, cout, bn2d) for (cin, cout) in zip(channels[:-1], channels[1:])]) |
|
self.proj = nn.Conv2d(channels[-1], 3, kernel_size=1, stride=1, bias=True) |
|
|
|
self.initialize() |
|
|
|
def forward(self, to_dec: List[torch.Tensor]): |
|
x = 0 |
|
for i, d in enumerate(self.dec): |
|
if i < len(to_dec) and to_dec[i] is not None: |
|
x = x + to_dec[i] |
|
x = self.dec[i](x) |
|
return self.proj(x) |
|
|
|
def extra_repr(self) -> str: |
|
return f'width={self.width}' |
|
|
|
def initialize(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Conv2d): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0.) |
|
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm1d, nn.BatchNorm2d, nn.SyncBatchNorm)): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0)
|
|
|