You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

273 lines
9.0 KiB

# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import functools
import os
import subprocess
import sys
import time
from collections import defaultdict, deque
from typing import Iterator
import numpy as np
import pytz
import torch
import torch.distributed as tdist
import dist
os_system = functools.partial(subprocess.call, shell=True)
os_system_get_stdout = lambda cmd: subprocess.run(cmd, shell=True, stdout=subprocess.PIPE).stdout.decode('utf-8')
def os_system_get_stdout_stderr(cmd):
sp = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return sp.stdout.decode('utf-8'), sp.stderr.decode('utf-8')
def is_pow2n(x):
return x > 0 and (x & (x - 1) == 0)
def time_str():
return datetime.datetime.now(tz=pytz.timezone('Asia/Shanghai')).strftime('[%m-%d %H:%M:%S]')
def init_distributed_environ(exp_dir):
dist.initialize()
dist.barrier()
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.deterministic = False
_set_print_only_on_master_proc(is_master=dist.is_local_master())
if dist.is_local_master() and len(exp_dir):
sys.stdout, sys.stderr = _SyncPrintToFile(exp_dir, stdout=True), _SyncPrintToFile(exp_dir, stdout=False)
def save_checkpoint(fname, args, epoch, performance_desc, model_without_ddp_state, optimizer_state):
checkpoint_path = os.path.join(args.exp_dir, fname)
if dist.is_local_master():
to_save = {
'args': str(args),
'arch': args.model,
'epoch': epoch,
'performance_desc': performance_desc,
'module': model_without_ddp_state,
'optimizer': optimizer_state,
}
torch.save(to_save, checkpoint_path)
dist.barrier()
def load_checkpoint(fname, model_without_ddp, optimizer):
print(f'[try to resume from file `{fname}`]')
checkpoint = torch.load(fname, map_location='cpu')
next_ep, performance_desc = checkpoint['epoch'] + 1, checkpoint['performance_desc']
missing, unexpected = model_without_ddp.load_state_dict(checkpoint['module'], strict=False)
print(f'[load_checkpoint] missing_keys={missing}')
print(f'[load_checkpoint] unexpected_keys={unexpected}')
print(f'[load_checkpoint] next_ep={next_ep}, performance_desc={performance_desc}')
if 'optimizer' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
return next_ep, performance_desc
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
tdist.barrier()
tdist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def time_preds(self, counts):
remain_secs = counts * self.median
remain_time = datetime.timedelta(seconds=round(remain_secs))
finish_time = time.strftime("%m-%d %H:%M", time.localtime(time.time() + remain_secs))
return remain_secs, str(remain_time), finish_time
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, max_iters, itrt, print_freq, header=None):
print_iters = set(np.linspace(0, max_iters-1, print_freq, dtype=int).tolist())
if not header:
header = ''
start_time = time.time()
end = time.time()
self.iter_time = SmoothedValue(fmt='{avg:.4f}')
self.data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(max_iters))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
log_msg = self.delimiter.join(log_msg)
if isinstance(itrt, Iterator) and not hasattr(itrt, 'preload') and not hasattr(itrt, 'set_epoch'):
for i in range(max_iters):
obj = next(itrt)
self.data_time.update(time.time() - end)
yield obj
self.iter_time.update(time.time() - end)
if i in print_iters:
eta_seconds = self.iter_time.global_avg * (max_iters - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(log_msg.format(
i, max_iters, eta=eta_string,
meters=str(self),
time=str(self.iter_time), data=str(self.data_time)))
end = time.time()
else:
for i, obj in enumerate(itrt):
self.data_time.update(time.time() - end)
yield obj
self.iter_time.update(time.time() - end)
if i in print_iters:
eta_seconds = self.iter_time.global_avg * (max_iters - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(log_msg.format(
i, max_iters, eta=eta_string,
meters=str(self),
time=str(self.iter_time), data=str(self.data_time)))
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.3f} s / it)'.format(
header, total_time_str, total_time / max_iters))
def _set_print_only_on_master_proc(is_master):
import builtins as __builtin__
builtin_print = __builtin__.print
def prt(msg, *args, **kwargs):
force = kwargs.pop('force', False)
clean = kwargs.pop('clean', False)
deeper = kwargs.pop('deeper', False)
if is_master or force:
if not clean:
f_back = sys._getframe().f_back
if deeper and f_back.f_back is not None:
f_back = f_back.f_back
file_desc = f'{f_back.f_code.co_filename:24s}'[-24:]
msg = f'{time_str()} ({file_desc}, line{f_back.f_lineno:-4d})=> {msg}'
builtin_print(msg, *args, **kwargs)
__builtin__.print = prt
class _SyncPrintToFile(object):
def __init__(self, exp_dir, stdout=True):
self.terminal = sys.stdout if stdout else sys.stderr
fname = os.path.join(exp_dir, 'stdout_backup.txt' if stdout else 'stderr_backup.txt')
self.log = open(fname, 'w')
self.log.flush()
def write(self, message):
self.terminal.write(message)
self.log.write(message)
self.log.flush()
def flush(self):
self.terminal.flush()
self.log.flush()