You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
7.7 KiB
160 lines
7.7 KiB
# Copyright (c) ByteDance, Inc. and its affiliates. |
|
# All rights reserved. |
|
# |
|
# This source code is licensed under the license found in the |
|
# LICENSE file in the root directory of this source tree. |
|
# |
|
# This file is basically a copy to: https://github.com/rwightman/pytorch-image-models/blob/v0.5.4/timm/optim/lamb.py |
|
|
|
|
|
""" PyTorch Lamb optimizer w/ behaviour similar to NVIDIA FusedLamb |
|
This optimizer code was adapted from the following (starting with latest) |
|
* https://github.com/HabanaAI/Model-References/blob/2b435114fe8e31f159b1d3063b8280ae37af7423/PyTorch/nlp/bert/pretraining/lamb.py |
|
* https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py |
|
* https://github.com/cybertronai/pytorch-lamb |
|
Use FusedLamb if you can (GPU). The reason for including this variant of Lamb is to have a version that is |
|
similar in behaviour to APEX FusedLamb if you aren't using NVIDIA GPUs or cannot install/use APEX. |
|
In addition to some cleanup, this Lamb impl has been modified to support PyTorch XLA and has been tested on TPU. |
|
Original copyrights for above sources are below. |
|
Modifications Copyright 2021 Ross Wightman |
|
""" |
|
import math |
|
|
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
|
|
class TimmLAMB(Optimizer): |
|
"""Implements a pure pytorch variant of FuseLAMB (NvLamb variant) optimizer from apex.optimizers.FusedLAMB |
|
reference: https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py |
|
|
|
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its norm. (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability. (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
grad_averaging (bool, optional): whether apply (1-beta2) to grad when |
|
calculating running averages of gradient. (default: True) |
|
max_grad_norm (float, optional): value used to clip global grad norm (default: 1.0) |
|
trust_clip (bool): enable LAMBC trust ratio clipping (default: False) |
|
always_adapt (boolean, optional): Apply adaptive learning rate to 0.0 |
|
weight decay parameter (default: False) |
|
|
|
.. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: |
|
https://arxiv.org/abs/1904.00962 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__( |
|
self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-6, |
|
weight_decay=0.01, grad_averaging=True, max_grad_norm=2.0, trust_clip=False, always_adapt=False): |
|
defaults = dict( |
|
lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, |
|
grad_averaging=grad_averaging, max_grad_norm=max_grad_norm, |
|
trust_clip=trust_clip, always_adapt=always_adapt) |
|
super().__init__(params, defaults) |
|
print(f'[lamb1] max_grad_norm={max_grad_norm}') |
|
self.global_grad_norm = 0 |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
device = self.param_groups[0]['params'][0].device |
|
one_tensor = torch.tensor(1.0, device=device) # because torch.where doesn't handle scalars correctly |
|
global_grad_norm = torch.zeros(1, device=device) |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.') |
|
global_grad_norm.add_(grad.pow(2).sum()) |
|
|
|
global_grad_norm = torch.sqrt(global_grad_norm) |
|
self.global_grad_norm = global_grad_norm.item() |
|
max_grad_norm = torch.tensor(self.defaults['max_grad_norm'], device=device) |
|
clip_global_grad_norm = 1 / torch.where( |
|
global_grad_norm > max_grad_norm, |
|
global_grad_norm / max_grad_norm, |
|
one_tensor) |
|
|
|
for group in self.param_groups: |
|
bias_correction = 1 if group['bias_correction'] else 0 |
|
beta1, beta2 = group['betas'] |
|
grad_averaging = 1 if group['grad_averaging'] else 0 |
|
beta3 = 1 - beta1 if grad_averaging else 1.0 |
|
|
|
# assume same step across group now to simplify things |
|
# per parameter step can be easily support by making it tensor, or pass list into kernel |
|
if 'step' in group: |
|
group['step'] += 1 |
|
else: |
|
group['step'] = 1 |
|
|
|
if bias_correction: |
|
bias_correction1 = 1 - beta1 ** group['step'] |
|
bias_correction2 = 1 - beta2 ** group['step'] |
|
else: |
|
bias_correction1, bias_correction2 = 1.0, 1.0 |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.mul_(clip_global_grad_norm) |
|
state = self.state[p] |
|
|
|
# State initialization |
|
if len(state) == 0: |
|
# Exponential moving average of gradient valuesa |
|
state['exp_avg'] = torch.zeros_like(p) |
|
# Exponential moving average of squared gradient values |
|
state['exp_avg_sq'] = torch.zeros_like(p) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
|
|
# Decay the first and second moment running average coefficient |
|
exp_avg.mul_(beta1).add_(grad, alpha=beta3) # m_t |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # v_t |
|
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) |
|
update = (exp_avg / bias_correction1).div_(denom) |
|
|
|
weight_decay = group['weight_decay'] |
|
if weight_decay != 0: |
|
update.add_(p, alpha=weight_decay) |
|
|
|
if weight_decay != 0 or group['always_adapt']: |
|
# Layer-wise LR adaptation. By default, skip adaptation on parameters that are |
|
# excluded from weight decay, unless always_adapt == True, then always enabled. |
|
w_norm = p.norm(2.0) |
|
g_norm = update.norm(2.0) |
|
# FIXME nested where required since logical and/or not working in PT XLA |
|
trust_ratio = torch.where( |
|
w_norm > 0, |
|
torch.where(g_norm > 0, w_norm / g_norm, one_tensor), |
|
one_tensor, |
|
) |
|
if group['trust_clip']: |
|
# LAMBC trust clipping, upper bound fixed at one |
|
trust_ratio = torch.minimum(trust_ratio, one_tensor) |
|
update.mul_(trust_ratio) |
|
|
|
p.add_(update, alpha=-group['lr']) |
|
|
|
return loss
|
|
|