## Preparation for ImageNet-1k pre-training See [/INSTALL.md](/INSTALL.md) to prepare `pip` dependencies and the ImageNet dataset. **Note: for network definitions, we directly use `timm.models.ResNet` and [official ConvNeXt](https://github.com/facebookresearch/ConvNeXt/blob/048efcea897d999aed302f2639b6270aedf8d4c8/models/convnext.py).** ## Tutorial for customizing your own CNN model See [/pretrain/models/custom.py](/pretrain/models/custom.py). The things needed to do is: - implementing member function `get_downsample_ratio` in [/pretrain/models/custom.py](/pretrain/models/custom.py). - implementing member function `get_feature_map_channels` in [/pretrain/models/custom.py](/pretrain/models/custom.py). - implementing member function `forward` in [/pretrain/models/custom.py](/pretrain/models/custom.py). - define `your_convnet(...)` with `@register_model` in [/pretrain/models/custom.py](/pretrain/models/custom.py). - add default kwargs of `your_convnet(...)` in [/pretrain/models/\_\_init\_\_.py](/pretrain/models/__init__.py). Then you can use `--model=your_convnet` in the pre-training script. ## Pre-training Any Model on ImageNet-1k (224x224) For pre-training, run [/pretrain/main.sh](/pretrain/main.sh) with bash. It is **required** to specify the ImageNet data folder (`--data_path`), the model name (`--model`), and your experiment name (the first argument of `main.sh`) when running the script. We use the **same** pre-training configurations (lr, batch size, etc.) for all models (ResNets and ConvNeXts). Their names and **default values** can be found in [/pretrain/utils/arg_util.py line24-47](/pretrain/utils/arg_util.py). These default configurations (like batch size 4096) would be used, unless you specify some like `--bs=512`. Here is an example command pre-training a ResNet50 on single machine with 8 GPUs: ```shell script $ cd /path/to/SparK/pretrain $ bash ./main.sh \ --num_nodes=1 --ngpu_per_node=8 \ --data_path=/path/to/imagenet \ --model=resnet50 --bs=512 ``` For multiple machines, change the `--num_nodes` to your count, and plus these args: ```shell script --node_rank= --master_address= --master_port= ``` Note the `` is the name of your experiment, which would be used to create an output directory named `output_`. ## Pre-training ConvNeXt-Large on ImageNet-1k (384x384) For pre-training with resolution 384, we use a larger mask ratio (0.75), a smaller batch size (2048), and a larger learning rate (4e-4): ```shell script $ cd /path/to/SparK/pretrain $ bash ./main.sh \ --num_nodes=8 --ngpu_per_node=8 --node_rank=... --master_address=... --master_port=... \ --data_path=/path/to/imagenet \ --model=convnext_large --input_size=384 --mask=0.75 \ --bs=2048 --base_lr=4e-4 ``` ## Logging Once an experiment starts running, the following files would be automatically created and updated in `output_`: - `_still_pretraining.pth`: saves model and optimizer states, current epoch, current reconstruction loss, etc; can be used to resume pre-training - `_1kpretrained.pth`: can be used for downstream fine-tuning - `pretrain_log.txt`: records some important information such as: - `git_commit_id`: git version - `cmd`: all arguments passed to the script It also reports the loss and remaining pre-training time at each epoch. - `stdout_backup.txt` and `stderr_backup.txt`: will save all output to stdout/stderr These files can help trace the experiment well. ## Resuming Add `--resume_from=path/to/still_pretraining.pth` to resume from a saved checkpoint. ## Regarding sparse convolution We do not use sparse convolutions in this pytorch implementation, due to their limited optimization on modern hardwares. As can be found in [/pretrain/encoder.py](/pretrain/encoder.py), we use masked dense convolution to simulate submanifold sparse convolution. We also define some sparse pooling or normalization layers in [/pretrain/encoder.py](/pretrain/encoder.py). All these "sparse" layers are implemented through pytorch built-in operators. ## Some details: how we mask images and how to set the patch size In SparK, the mask patch size **equals to** the downsample ratio of the CNN model (so there is no configuration like `--patch_size=32`). Here is the reason: when we do mask, we: 1. first generate the binary mask for the **smallest** resolution feature map, i.e., generate the `_cur_active` or `active_b1ff` in [/pretrain/spark.py line86-87](/pretrain/spark.py), which is a `torch.BoolTensor` shaped as `[B, 1, fmap_size, fmap_size]`, and would be used to mask the smallest feature map. 3. then progressively upsample it (i.e., expand its 2nd and 3rd dimensions by calling `repeat_interleave(..., 2)` and `repeat_interleave(..., 3)` in [/pretrain/encoder.py line16](/pretrain/encoder.py)), to mask those feature maps ([`x` in line21](/pretrain/encoder.py)) with larger resolutions . So if you want a patch size of 16 or 8, you should actually define a new CNN model with a downsample ratio of 16 or 8. See [Tutorial for customizing your own CNN model (above)](https://github.com/keyu-tian/SparK/tree/main/pretrain#some-details-how-we-mask-images-and-how-to-set-the-patch-size).