# Copyright (c) ByteDance, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import List import torch import torch.nn as nn from timm.models.layers import trunc_normal_ from utils.misc import is_pow2n class UNetBlock(nn.Module): def __init__(self, cin, cout, bn2d): """ a UNet block with 2x up sampling """ super().__init__() self.up_sample = nn.ConvTranspose2d(cin, cin, kernel_size=4, stride=2, padding=1, bias=True) self.conv = nn.Sequential( nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=False), bn2d(cin), nn.ReLU6(inplace=True), nn.Conv2d(cin, cout, kernel_size=3, stride=1, padding=1, bias=False), bn2d(cout), ) def forward(self, x): x = self.up_sample(x) return self.conv(x) class LightDecoder(nn.Module): def __init__(self, up_sample_ratio, width=768, sbn=True): # todo: the decoder's width follows a simple halfing rule; you can change it to any other rule super().__init__() self.width = width assert is_pow2n(up_sample_ratio) n = round(math.log2(up_sample_ratio)) channels = [self.width // 2 ** i for i in range(n + 1)] # todo: the decoder's width follows a simple halfing rule; you can change it to any other rule bn2d = nn.SyncBatchNorm if sbn else nn.BatchNorm2d self.dec = nn.ModuleList([UNetBlock(cin, cout, bn2d) for (cin, cout) in zip(channels[:-1], channels[1:])]) self.proj = nn.Conv2d(channels[-1], 3, kernel_size=1, stride=1, bias=True) self.initialize() def forward(self, to_dec: List[torch.Tensor]): x = 0 for i, d in enumerate(self.dec): if i < len(to_dec) and to_dec[i] is not None: x = x + to_dec[i] x = self.dec[i](x) return self.proj(x) def extra_repr(self) -> str: return f'width={self.width}' def initialize(self): for m in self.modules(): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0.) elif isinstance(m, (nn.LayerNorm, nn.BatchNorm1d, nn.BatchNorm2d, nn.SyncBatchNorm)): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)