## Preparation for ImageNet-1k pretraining See [/INSTALL.md](/INSTALL.md) to prepare `pip` dependencies and the ImageNet dataset. **Note: for network definitions, we directly use `timm.models.ResNet` and [official ConvNeXt](https://github.com/facebookresearch/ConvNeXt/blob/048efcea897d999aed302f2639b6270aedf8d4c8/models/convnext.py).** ## Tutorial for pretraining your own CNN model See [/pretrain/models/custom.py](/pretrain/models/custom.py). The things needed to do is: - implementing member function `get_downsample_ratio` in [/pretrain/models/custom.py line20](/pretrain/models/custom.py#L20). - implementing member function `get_feature_map_channels` in [/pretrain/models/custom.py line29](/pretrain/models/custom.py#L29). - implementing member function `forward` in [/pretrain/models/custom.py line38](/pretrain/models/custom.py#L38). - define `your_convnet(...)` with `@register_model` in [/pretrain/models/custom.py line54](/pretrain/models/custom.py#L53-L54). - add default kwargs of `your_convnet(...)` in [/pretrain/models/\_\_init\_\_.py line34](/pretrain/models/__init__.py#L34). Then you can use `--model=your_convnet` in the pretraining script. ## Tutorial for pretraining your own dataset Replace the function `build_dataset_to_pretrain` in [line54-75 of /pretrain/utils/imagenet.py](/pretrain/utils/imagenet.py#L54-L75) to yours. This function should return a `Dataset` object. You may use args like `args.data_path` and `args.input_size` to help build your dataset. And when running experiment you can use `--data_path=... --input_size=...` to specify them. Note the batch size `--bs` is the total batch size of all GPU, which may also need to be tuned. ## Debug on 1 GPU (without DistributedDataParallel) Use a small batch size `--bs=32` for avoiding OOM. ```shell script python3 main.py --exp_name=debug --data_path=/path/to/imagenet --model=resnet50 --bs=32 ``` ## Pretraining Any Model on ImageNet-1k (224x224) For pretraining, run [/pretrain/main.py](/pretrain/main.py) with `torchrun`. **It is required to specify** the ImageNet data folder (`--data_path`), your experiment name & log dir (`--exp_name` and `--exp_dir`, automatically created if not exists), and the model name (`--model`, valid choices see the keys of 'pretrain_default_model_kwargs' in [/pretrain/models/\_\_init\_\_.py line34](/pretrain/models/__init__.py#L34)). We use the **same** pretraining configurations (lr, batch size, etc.) for all models (ResNets and ConvNeXts) in 224 pretraining. Their **names** and **default values** are in [/pretrain/utils/arg_util.py line23-44](/pretrain/utils/arg_util.py#L23-L44). All these default configurations (like batch size 4096) would be used, unless you specify some like `--bs=512`. **Note: the batch size `--bs` is the total batch size of all GPU, and the learning rate `--base_lr` is the base lr. The actual lr would be `base_lr * bs / 256`, as in [/pretrain/utils/arg_util.py line131](/pretrain/utils/arg_util.py#L131). So don't use `--lr` to specify a lr (will be ignored)** Here is an example to pretrain a ResNet50 on an 8-GPU single machine (we use DistributedDataParallel), overwriting the default batch size to 512: ```shell script $ cd /path/to/SparK/pretrain $ torchrun --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr=localhost --master_port= main.py \ --data_path=/path/to/imagenet --exp_name= --exp_dir=/path/to/logdir \ --model=resnet50 --bs=512 ``` For multiple machines, change the `--nnodes` and `--master_addr` to your configurations. E.g.: ```shell script $ torchrun --nproc_per_node=8 --nnodes= --node_rank= --master_address= --master_port= main.py \ ... ``` ## Pretraining ConvNeXt-Large on ImageNet-1k (384x384) For 384 pretraining we use a larger mask ratio (0.75), a half batch size (2048), and a double base learning rate (4e-4): ```shell script $ cd /path/to/SparK/pretrain $ torchrun --nproc_per_node=8 --nnodes= --node_rank= --master_address= --master_port= main.py \ --data_path=/path/to/imagenet --exp_name= --exp_dir=/path/to/logdir \ --model=convnext_large --input_size=384 --mask=0.75 --bs=2048 --base_lr=4e-4 ``` ## Logging See files under `--exp_dir` to track your experiment: - `_still_pretraining.pth`: saves model and optimizer states, current epoch, current reconstruction loss, etc; can be used to resume pretraining - `_1kpretrained.pth`: can be used for downstream finetuning - `pretrain_log.txt`: records some important information such as: - `git_commit_id`: git version - `cmd`: all arguments passed to the script It also reports the loss and remaining pretraining time at each epoch. - `tensorboard_log/`: saves a lot of tensorboard logs, you can visualize loss values, learning rates, gradient norms and more things via `tensorboard --logdir /path/to/this/tensorboard_log/ --port 23333`. - `stdout_backup.txt` and `stderr_backup.txt`: will save all output to stdout/stderr ## Resuming Add the arg `--resume_from=path/to/_still_pretraining.pth` to resume pretraining. ## Regarding sparse convolution We do not use sparse convolutions in this pytorch implementation, due to their limited optimization on modern hardware. As can be found in [/pretrain/encoder.py](/pretrain/encoder.py), we use masked dense convolution to simulate submanifold sparse convolution. We also define some sparse pooling or normalization layers in [/pretrain/encoder.py](/pretrain/encoder.py). All these "sparse" layers are implemented through pytorch built-in operators. ## Some details: how we mask images and how to set the patch size In SparK, the mask patch size **equals to** the downsample ratio of the CNN model (so there is no configuration like `--patch_size=32`). Here is the reason: when we do mask, we: 1. first generate the binary mask for the **smallest** resolution feature map, i.e., generate the `_cur_active` or `active_b1ff` in [/pretrain/spark.py line86-87](/pretrain/spark.py#L86-L87), which is a `torch.BoolTensor` shaped as `[B, 1, fmap_h, fmap_w]`, and would be used to mask the smallest feature map. 3. then progressively upsample it (i.e., expand its 2nd and 3rd dimensions by calling `repeat_interleave(..., 2)` and `repeat_interleave(..., 3)` in [/pretrain/encoder.py line16](/pretrain/encoder.py#L16)), to mask those feature maps ([`x` in line21](/pretrain/encoder.py#L21)) with larger resolutions . So if you want a patch size of 16 or 8, you should actually define a new CNN model with a downsample ratio of 16 or 8. See [Tutorial for pretraining your own CNN model (above)](https://github.com/keyu-tian/SparK/tree/main/pretrain/#tutorial-for-pretraining-your-own-cnn-model).