## About code isolation This `downstream_d2` is isolated from pre-training codes. One can treat this `downstream_d2` as an independent codebase 🛠️. ## Fine-tuned ResNet-50 weights, log files, and performance
[[`fine-tuned weights`](https://drive.google.com/file/d/1Ue7SiQ1E_AwgtYo56Fm-iUlQPZ8vIwYj/view?usp=share_link)] [[`metrics.json`](https://drive.google.com/file/d/1wfbUWh4svV8sPWya_0PAhsLHVayDQRCi/view?usp=share_link)] [[`log.txt`](https://drive.google.com/file/d/11zVo_87pe9DMAmfNQK9FUfyjQWHTRKxV/view?usp=share_link)] [[`tensorboard file`](https://drive.google.com/file/d/1aM1qj8c3-Uka1dZuYmKhgp1lNJpeMDMl/view?usp=share_link)]

## Installation [Detectron2 v0.6](https://github.com/facebookresearch/detectron2/releases/tag/v0.6) for fine-tuning ResNet on COCO 1. Let you in some python environment, e.g.: ```shell script $ conda create -n spark python=3.8 -y $ conda activate spark ``` 2. Install `detectron2==0.6` (e.g., with `torch==1.10.0` and `cuda11.3`): ```shell script $ pip install detectron2==0.6 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html ``` You can also find instructions for different pytorch/cuda versions on [this page](https://github.com/facebookresearch/detectron2/releases/tag/v0.6). 3. Put the COCO dataset folder at `downstream_d2/datasets/coco`. The folder should follow the [directory structure](https://github.com/facebookresearch/detectron2/tree/master/datasets) requried by `detectron2`, which should look like this: ``` downstream_d2/datasets/coco: annotations/: captions_train2017.json captions_val2017.json instances_train2017.json instances_val2017.json person_keypoints_train2017.json person_keypoints_val2017.json train2017/: a_lot_images.jpg val2017/: a_lot_images.jpg ``` ## Training from pre-trained checkpoint The script file for COCO fine-tuning (object detection and instance segmentation) is [downstream_d2/train_net.py](https://github.com/keyu-tian/SparK/blob/main/downstream_d2/train_net.py), which is a modification of [Detectron2's tools/train_net.py](https://github.com/facebookresearch/detectron2/blob/v0.6/tools/train_net.py). Before fine-tuning a ResNet50 pre-trained by SparK, you should first convert our checkpoint file to detectron2-style `.pkl` file: ```shell script $ cd /path/to/SparK/downstream_d2 $ python3 convert-timm-to-d2.py /some/path/to/timm_resnet50_1kpretrained.pth d2-style.pkl ``` For a ResNet50, you should see a log reporting `len(state)==318`: ```text [convert] .pkl is generated! (from `/some/path/to/timm_resnet50_1kpretrained.pth`, to `d2-style.pkl`, len(state)==318) ``` Then run fine-tuning on single machine with 8 gpus: ```shell script $ cd /path/to/SparK/downstream_d2 $ python3 ./train_net.py --resume --num-gpus 8 --config-file ./configs/coco_R_50_FPN_CONV_1x_moco_adam.yaml \ MODEL.WEIGHTS d2-style.pkl \ OUTPUT_DIR ``` For multiple machines, plus these args: ```shell script --num-machines --machine-rank --dist-url ``` In `` you'll see the log files generated by `detectron2`. ## Details: how we modify the official Detectron2's [tools/train_net.py](https://github.com/facebookresearch/detectron2/blob/v0.6/tools/train_net.py) to get our [downstream_d2/train_net.py](https://github.com/keyu-tian/SparK/blob/main/downstream_d2/train_net.py) The main modification is adding two new hyperparameters: - str `SOLVER.OPTIMIZER`: use 'adam' or 'sgd' optimizer - float `SOLVER.LR_DECAY`: the decay ratio (from 0. to 1.) of layer-wise learning rate decay trick We also add a hook for logging results to `cfg.OUTPUT_DIR/d2_coco_log.txt`. All of our modifications to the original `train_net.py` are commented with `# [modification] ...` in [downstream_d2/train_net.py](https://github.com/keyu-tian/SparK/blob/main/downstream_d2/train_net.py).