You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
4.1 KiB
113 lines
4.1 KiB
2 years ago
|
# Copyright (c) ByteDance, Inc. and its affiliates.
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
import math
|
||
|
|
||
|
from timm.models.layers import trunc_normal_, DropPath, Mlp
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from utils.misc import is_pow2n
|
||
|
|
||
|
_BN = None
|
||
|
|
||
|
|
||
|
class UNetBlock2x(nn.Module):
|
||
|
def __init__(self, cin, cout, cmid, last_act=True):
|
||
|
super().__init__()
|
||
|
if cmid == 0:
|
||
|
c_mid = cin
|
||
|
elif cmid == 1:
|
||
|
c_mid = (cin + cout) // 2
|
||
|
|
||
|
self.b = nn.Sequential(
|
||
|
nn.Conv2d(cin, c_mid, 3, 1, 1, bias=False), _BN(c_mid), nn.ReLU6(inplace=True),
|
||
|
nn.Conv2d(c_mid, cout, 3, 1, 1, bias=False), _BN(cout), (nn.ReLU6(inplace=True) if last_act else nn.Identity()),
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.b(x)
|
||
|
|
||
|
|
||
|
class DecoderConv(nn.Module):
|
||
|
def __init__(self, cin, cout, double, heavy, cmid):
|
||
|
super().__init__()
|
||
|
self.up = nn.ConvTranspose2d(cin, cin, kernel_size=4 if double else 2, stride=2, padding=1 if double else 0, bias=True)
|
||
|
ls = [UNetBlock2x(cin, (cin if i != heavy[1]-1 else cout), cmid=cmid, last_act=i != heavy[1]-1) for i in range(heavy[1])]
|
||
|
self.conv = nn.Sequential(*ls)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.up(x)
|
||
|
return self.conv(x)
|
||
|
|
||
|
|
||
|
class LightDecoder(nn.Module):
|
||
|
def __init__(self, decoder_fea_dim, upsample_ratio, double=False, heavy=None, cmid=0, sbn=False):
|
||
|
global _BN
|
||
|
_BN = nn.SyncBatchNorm if sbn else nn.BatchNorm2d
|
||
|
super().__init__()
|
||
|
self.fea_dim = decoder_fea_dim
|
||
|
if heavy is None:
|
||
|
heavy = [0, 1]
|
||
|
heavy[1] = max(1, heavy[1])
|
||
|
self.double_bool = double
|
||
|
self.heavy = heavy
|
||
|
self.cmid = cmid
|
||
|
self.sbn = sbn
|
||
|
|
||
|
assert is_pow2n(upsample_ratio)
|
||
|
n = round(math.log2(upsample_ratio))
|
||
|
channels = [self.fea_dim // 2**i for i in range(n+1)]
|
||
|
self.dec = nn.ModuleList([
|
||
|
DecoderConv(cin, cout, double, heavy, cmid) for (cin, cout) in zip(channels[:-1], channels[1:])
|
||
|
])
|
||
|
self.proj = nn.Conv2d(channels[-1], 3, kernel_size=1, stride=1, bias=True)
|
||
|
|
||
|
self.initialize()
|
||
|
|
||
|
def forward(self, to_dec):
|
||
|
x = 0
|
||
|
for i, d in enumerate(self.dec):
|
||
|
if i < len(to_dec) and to_dec[i] is not None:
|
||
|
x = x + to_dec[i]
|
||
|
x = self.dec[i](x)
|
||
|
return self.proj(x)
|
||
|
|
||
|
def num_para(self):
|
||
|
tot = sum(p.numel() for p in self.parameters())
|
||
|
|
||
|
para1 = para2 = 0
|
||
|
for m in self.dec.modules():
|
||
|
if isinstance(m, nn.ConvTranspose2d):
|
||
|
para1 += sum(p.numel() for p in m.parameters())
|
||
|
elif isinstance(m, nn.Conv2d):
|
||
|
para2 += sum(p.numel() for p in m.parameters())
|
||
|
return f'#para: {tot/1e6:.2f} (dconv={para1/1e6:.2f}, conv={para2/1e6:.2f}, ot={(tot-para1-para2)/1e6:.2f})'
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'fea_dim={self.fea_dim}, dbl={self.double_bool}, heavy={self.heavy}, cmid={self.cmid}, sbn={self.sbn}'
|
||
|
|
||
|
def initialize(self):
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Linear):
|
||
|
trunc_normal_(m.weight, std=.02)
|
||
|
if m.bias is not None:
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
elif isinstance(m, nn.Embedding):
|
||
|
trunc_normal_(m.weight, std=.02)
|
||
|
if m.padding_idx is not None:
|
||
|
m.weight.data[m.padding_idx].zero_()
|
||
|
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm1d, nn.BatchNorm2d, nn.SyncBatchNorm)):
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
nn.init.constant_(m.weight, 1.0)
|
||
|
elif isinstance(m, nn.Conv2d):
|
||
|
trunc_normal_(m.weight, std=.02)
|
||
|
if m.bias is not None:
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
elif isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
||
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||
|
if m.bias is not None:
|
||
|
nn.init.constant_(m.bias, 0.)
|