You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

113 lines
4.1 KiB

2 years ago
# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from timm.models.layers import trunc_normal_, DropPath, Mlp
import torch.nn as nn
from utils.misc import is_pow2n
_BN = None
class UNetBlock2x(nn.Module):
def __init__(self, cin, cout, cmid, last_act=True):
super().__init__()
if cmid == 0:
c_mid = cin
elif cmid == 1:
c_mid = (cin + cout) // 2
self.b = nn.Sequential(
nn.Conv2d(cin, c_mid, 3, 1, 1, bias=False), _BN(c_mid), nn.ReLU6(inplace=True),
nn.Conv2d(c_mid, cout, 3, 1, 1, bias=False), _BN(cout), (nn.ReLU6(inplace=True) if last_act else nn.Identity()),
)
def forward(self, x):
return self.b(x)
class DecoderConv(nn.Module):
def __init__(self, cin, cout, double, heavy, cmid):
super().__init__()
self.up = nn.ConvTranspose2d(cin, cin, kernel_size=4 if double else 2, stride=2, padding=1 if double else 0, bias=True)
ls = [UNetBlock2x(cin, (cin if i != heavy[1]-1 else cout), cmid=cmid, last_act=i != heavy[1]-1) for i in range(heavy[1])]
self.conv = nn.Sequential(*ls)
def forward(self, x):
x = self.up(x)
return self.conv(x)
class LightDecoder(nn.Module):
def __init__(self, decoder_fea_dim, upsample_ratio, double=False, heavy=None, cmid=0, sbn=False):
global _BN
_BN = nn.SyncBatchNorm if sbn else nn.BatchNorm2d
super().__init__()
self.fea_dim = decoder_fea_dim
if heavy is None:
heavy = [0, 1]
heavy[1] = max(1, heavy[1])
self.double_bool = double
self.heavy = heavy
self.cmid = cmid
self.sbn = sbn
assert is_pow2n(upsample_ratio)
n = round(math.log2(upsample_ratio))
channels = [self.fea_dim // 2**i for i in range(n+1)]
self.dec = nn.ModuleList([
DecoderConv(cin, cout, double, heavy, cmid) for (cin, cout) in zip(channels[:-1], channels[1:])
])
self.proj = nn.Conv2d(channels[-1], 3, kernel_size=1, stride=1, bias=True)
self.initialize()
def forward(self, to_dec):
x = 0
for i, d in enumerate(self.dec):
if i < len(to_dec) and to_dec[i] is not None:
x = x + to_dec[i]
x = self.dec[i](x)
return self.proj(x)
def num_para(self):
tot = sum(p.numel() for p in self.parameters())
para1 = para2 = 0
for m in self.dec.modules():
if isinstance(m, nn.ConvTranspose2d):
para1 += sum(p.numel() for p in m.parameters())
elif isinstance(m, nn.Conv2d):
para2 += sum(p.numel() for p in m.parameters())
return f'#para: {tot/1e6:.2f} (dconv={para1/1e6:.2f}, conv={para2/1e6:.2f}, ot={(tot-para1-para2)/1e6:.2f})'
def extra_repr(self) -> str:
return f'fea_dim={self.fea_dim}, dbl={self.double_bool}, heavy={self.heavy}, cmid={self.cmid}, sbn={self.sbn}'
def initialize(self):
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Embedding):
trunc_normal_(m.weight, std=.02)
if m.padding_idx is not None:
m.weight.data[m.padding_idx].zero_()
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm1d, nn.BatchNorm2d, nn.SyncBatchNorm)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0.)