|
|
|
# Copyright (c) ByteDance, Inc. and its affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
from pprint import pformat
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN
|
|
|
|
from timm.models.layers import trunc_normal_
|
|
|
|
|
|
|
|
import encoder
|
|
|
|
from decoder import LightDecoder
|
|
|
|
|
|
|
|
|
|
|
|
class SparK(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self, sparse_encoder: encoder.SparseEncoder, dense_decoder: LightDecoder,
|
|
|
|
mask_ratio=0.6, densify_norm='bn', sbn=False,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
input_size, downsample_raito = sparse_encoder.input_size, sparse_encoder.downsample_raito
|
|
|
|
self.downsample_raito = downsample_raito
|
|
|
|
self.fmap_h, self.fmap_w = input_size // downsample_raito, input_size // downsample_raito
|
|
|
|
self.mask_ratio = mask_ratio
|
|
|
|
self.len_keep = round(self.fmap_h * self.fmap_w * (1 - mask_ratio))
|
|
|
|
|
|
|
|
self.sparse_encoder = sparse_encoder
|
|
|
|
self.dense_decoder = dense_decoder
|
|
|
|
|
|
|
|
self.sbn = sbn
|
|
|
|
self.hierarchy = len(sparse_encoder.enc_feat_map_chs)
|
|
|
|
self.densify_norm_str = densify_norm.lower()
|
|
|
|
self.densify_norms = nn.ModuleList()
|
|
|
|
self.densify_projs = nn.ModuleList()
|
|
|
|
self.mask_tokens = nn.ParameterList()
|
|
|
|
|
|
|
|
# build the `densify` layers
|
|
|
|
e_widths, d_width = self.sparse_encoder.enc_feat_map_chs, self.dense_decoder.width
|
|
|
|
e_widths: List[int]
|
|
|
|
for i in range(self.hierarchy): # from the smallest feat map to the largest; i=0: the last feat map; i=1: the second last feat map ...
|
|
|
|
e_width = e_widths.pop()
|
|
|
|
# create mask token
|
|
|
|
p = nn.Parameter(torch.zeros(1, e_width, 1, 1))
|
|
|
|
trunc_normal_(p, mean=0, std=.02, a=-.02, b=.02)
|
|
|
|
self.mask_tokens.append(p)
|
|
|
|
|
|
|
|
# create densify norm
|
|
|
|
if self.densify_norm_str == 'bn':
|
|
|
|
densify_norm = (encoder.SparseSyncBatchNorm2d if self.sbn else encoder.SparseBatchNorm2d)(e_width)
|
|
|
|
elif self.densify_norm_str == 'ln':
|
|
|
|
densify_norm = encoder.SparseConvNeXtLayerNorm(e_width, data_format='channels_first', sparse=True)
|
|
|
|
else:
|
|
|
|
densify_norm = nn.Identity()
|
|
|
|
self.densify_norms.append(densify_norm)
|
|
|
|
|
|
|
|
# create densify proj
|
|
|
|
if i == 0 and e_width == d_width:
|
|
|
|
densify_proj = nn.Identity() # todo: NOTE THAT CONVNEXT-S WOULD USE THIS, because it has a width of 768 that equals to the decoder's width 768
|
|
|
|
print(f'[SparK.__init__, densify {i+1}/{self.hierarchy}]: use nn.Identity() as densify_proj')
|
|
|
|
else:
|
|
|
|
kernel_size = 1 if i <= 0 else 3
|
|
|
|
densify_proj = nn.Conv2d(e_width, d_width, kernel_size=kernel_size, stride=1, padding=kernel_size // 2, bias=True)
|
|
|
|
print(f'[SparK.__init__, densify {i+1}/{self.hierarchy}]: densify_proj(ksz={kernel_size}, #para={sum(x.numel() for x in densify_proj.parameters()) / 1e6:.2f}M)')
|
|
|
|
self.densify_projs.append(densify_proj)
|
|
|
|
|
|
|
|
# todo: the decoder's width follows a simple halfing rule; you can change it to any other rule
|
|
|
|
d_width //= 2
|
|
|
|
|
|
|
|
print(f'[SparK.__init__] dims of mask_tokens={tuple(p.numel() for p in self.mask_tokens)}')
|
|
|
|
|
|
|
|
m = torch.tensor(IMAGENET_DEFAULT_MEAN).view(1, 3, 1, 1)
|
|
|
|
s = torch.tensor(IMAGENET_DEFAULT_STD).view(1, 3, 1, 1)
|
|
|
|
self.register_buffer('imn_m', m)
|
|
|
|
self.register_buffer('imn_s', s)
|
|
|
|
self.register_buffer('norm_black', torch.zeros(1, 3, input_size, input_size))
|
|
|
|
self.vis_active = self.vis_active_ex = self.vis_inp = self.vis_inp_mask = ...
|
|
|
|
|
|
|
|
def mask(self, B: int, device, generator=None):
|
|
|
|
h, w = self.fmap_h, self.fmap_w
|
|
|
|
idx = torch.rand(B, h * w, generator=generator).argsort(dim=1)
|
|
|
|
idx = idx[:, :self.len_keep].to(device) # (B, len_keep)
|
|
|
|
return torch.zeros(B, h * w, dtype=torch.bool, device=device).scatter_(dim=1, index=idx, value=True).view(B, 1, h, w)
|
|
|
|
|
|
|
|
def forward(self, inp_bchw: torch.Tensor, active_b1ff=None, vis=False):
|
|
|
|
# step1. Mask
|
|
|
|
if active_b1ff is None: # rand mask
|
|
|
|
active_b1ff: torch.BoolTensor = self.mask(inp_bchw.shape[0], inp_bchw.device) # (B, 1, f, f)
|
|
|
|
encoder._cur_active = active_b1ff # (B, 1, f, f)
|
|
|
|
active_b1hw = active_b1ff.repeat_interleave(self.downsample_raito, 2).repeat_interleave(self.downsample_raito, 3) # (B, 1, H, W)
|
|
|
|
masked_bchw = inp_bchw * active_b1hw
|
|
|
|
|
|
|
|
# step2. Encode: get hierarchical encoded sparse features (a list containing 4 feature maps at 4 scales)
|
|
|
|
fea_bcffs: List[torch.Tensor] = self.sparse_encoder(masked_bchw)
|
|
|
|
fea_bcffs.reverse() # after reversion: from the smallest feature map to the largest
|
|
|
|
|
|
|
|
# step3. Densify: get hierarchical dense features for decoding
|
|
|
|
cur_active = active_b1ff # (B, 1, f, f)
|
|
|
|
to_dec = []
|
|
|
|
for i, bcff in enumerate(fea_bcffs): # from the smallest feature map to the largest
|
|
|
|
if bcff is not None:
|
|
|
|
bcff = self.densify_norms[i](bcff)
|
|
|
|
mask_tokens = self.mask_tokens[i].expand_as(bcff)
|
|
|
|
bcff = torch.where(cur_active.expand_as(bcff), bcff, mask_tokens) # fill in empty (non-active) positions with [mask] tokens
|
|
|
|
bcff: torch.Tensor = self.densify_projs[i](bcff)
|
|
|
|
to_dec.append(bcff)
|
|
|
|
cur_active = cur_active.repeat_interleave(2, dim=2).repeat_interleave(2, dim=3) # dilate the mask map, from (B, 1, f, f) to (B, 1, H, W)
|
|
|
|
|
|
|
|
# step4. Decode and reconstruct
|
|
|
|
rec_bchw = self.dense_decoder(to_dec)
|
|
|
|
inp, rec = self.patchify(inp_bchw), self.patchify(rec_bchw) # inp and rec: (B, L = f*f, N = C*downsample_raito**2)
|
|
|
|
mean = inp.mean(dim=-1, keepdim=True)
|
|
|
|
var = (inp.var(dim=-1, keepdim=True) + 1e-6) ** .5
|
|
|
|
inp = (inp - mean) / var
|
|
|
|
l2_loss = ((rec - inp) ** 2).mean(dim=2, keepdim=False) # (B, L, C) ==mean==> (B, L)
|
|
|
|
|
|
|
|
non_active = active_b1ff.logical_not().int().view(active_b1ff.shape[0], -1) # (B, 1, f, f) => (B, L)
|
|
|
|
recon_loss = l2_loss.mul_(non_active).sum() / (non_active.sum() + 1e-8) # loss only on masked (non-active) patches
|
|
|
|
|
|
|
|
if vis:
|
|
|
|
masked_bchw = inp_bchw * active_b1hw
|
|
|
|
rec_bchw = self.unpatchify(rec * var + mean)
|
|
|
|
rec_or_inp = torch.where(active_b1hw, inp_bchw, rec_bchw)
|
|
|
|
return [self.denorm_for_vis(i) for i in (inp_bchw, masked_bchw, rec_or_inp)]
|
|
|
|
else:
|
|
|
|
return recon_loss
|
|
|
|
|
|
|
|
def patchify(self, bchw):
|
|
|
|
p = self.downsample_raito
|
|
|
|
h, w = self.fmap_h, self.fmap_w
|
|
|
|
B, C = bchw.shape[:2]
|
|
|
|
bchw = bchw.reshape(shape=(B, C, h, p, w, p))
|
|
|
|
bchw = torch.einsum('bchpwq->bhwpqc', bchw)
|
|
|
|
bln = bchw.reshape(shape=(B, h * w, C * p ** 2)) # (B, f*f, 3*downsample_raito**2)
|
|
|
|
return bln
|
|
|
|
|
|
|
|
def unpatchify(self, bln):
|
|
|
|
p = self.downsample_raito
|
|
|
|
h, w = self.fmap_h, self.fmap_w
|
|
|
|
B, C = bln.shape[0], bln.shape[-1] // p ** 2
|
|
|
|
bln = bln.reshape(shape=(B, h, w, p, p, C))
|
|
|
|
bln = torch.einsum('bhwpqc->bchpwq', bln)
|
|
|
|
bchw = bln.reshape(shape=(B, C, h * p, w * p))
|
|
|
|
return bchw
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return (
|
|
|
|
f'\n'
|
|
|
|
f'[SparK.config]: {pformat(self.get_config(), indent=2, width=250)}\n'
|
|
|
|
f'[SparK.structure]: {super(SparK, self).__repr__().replace(SparK.__name__, "")}'
|
|
|
|
)
|
|
|
|
|
|
|
|
def get_config(self):
|
|
|
|
return {
|
|
|
|
# self
|
|
|
|
'mask_ratio': self.mask_ratio,
|
|
|
|
'densify_norm_str': self.densify_norm_str,
|
|
|
|
'sbn': self.sbn, 'hierarchy': self.hierarchy,
|
|
|
|
|
|
|
|
# enc
|
|
|
|
'sparse_encoder.input_size': self.sparse_encoder.input_size,
|
|
|
|
# dec
|
|
|
|
'dense_decoder.width': self.dense_decoder.width,
|
|
|
|
}
|
|
|
|
|
|
|
|
def state_dict(self, destination=None, prefix='', keep_vars=False, with_config=False):
|
|
|
|
state = super(SparK, self).state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
|
|
|
|
if with_config:
|
|
|
|
state['config'] = self.get_config()
|
|
|
|
return state
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict, strict=True):
|
|
|
|
config: dict = state_dict.pop('config', None)
|
|
|
|
incompatible_keys = super(SparK, self).load_state_dict(state_dict, strict=strict)
|
|
|
|
if config is not None:
|
|
|
|
for k, v in self.get_config().items():
|
|
|
|
ckpt_v = config.get(k, None)
|
|
|
|
if ckpt_v != v:
|
|
|
|
err = f'[SparseMIM.load_state_dict] config mismatch: this.{k}={v} (ckpt.{k}={ckpt_v})'
|
|
|
|
if strict:
|
|
|
|
raise AttributeError(err)
|
|
|
|
else:
|
|
|
|
print(err, file=sys.stderr)
|
|
|
|
return incompatible_keys
|
|
|
|
|
|
|
|
def denorm_for_vis(self, normalized_im):
|
|
|
|
normalized_im = (normalized_im * self.imn_s).add_(self.imn_m)
|
|
|
|
return torch.clamp(normalized_im, 0, 1)
|