|
|
|
# Copyright (c) ByteDance, Inc. and its affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
import random
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from torch.utils.data.sampler import Sampler
|
|
|
|
|
|
|
|
|
|
|
|
def worker_init_fn(worker_id):
|
|
|
|
# https://pytorch.org/docs/stable/notes/randomness.html#dataloader
|
|
|
|
worker_seed = torch.initial_seed() % 2 ** 32
|
|
|
|
np.random.seed(worker_seed)
|
|
|
|
random.seed(worker_seed)
|
|
|
|
|
|
|
|
|
|
|
|
class DistInfiniteBatchSampler(Sampler):
|
|
|
|
def __init__(self, world_size, rank, dataset_len, glb_batch_size, seed=1, filling=False, shuffle=True):
|
|
|
|
assert glb_batch_size % world_size == 0
|
|
|
|
self.world_size, self.rank = world_size, rank
|
|
|
|
self.dataset_len = dataset_len
|
|
|
|
self.glb_batch_size = glb_batch_size
|
|
|
|
self.batch_size = glb_batch_size // world_size
|
|
|
|
|
|
|
|
self.iters_per_ep = (dataset_len + glb_batch_size - 1) // glb_batch_size
|
|
|
|
self.filling = filling
|
|
|
|
self.shuffle = shuffle
|
|
|
|
self.epoch = 0
|
|
|
|
self.seed = seed
|
|
|
|
self.indices = self.gener_indices()
|
|
|
|
|
|
|
|
def gener_indices(self):
|
|
|
|
global_max_p = self.iters_per_ep * self.glb_batch_size # global_max_p % world_size must be 0 cuz glb_batch_size % world_size == 0
|
|
|
|
if self.shuffle:
|
|
|
|
g = torch.Generator()
|
|
|
|
g.manual_seed(self.epoch + self.seed)
|
|
|
|
global_indices = torch.randperm(self.dataset_len, generator=g)
|
|
|
|
else:
|
|
|
|
global_indices = torch.arange(self.dataset_len)
|
|
|
|
filling = global_max_p - global_indices.shape[0]
|
|
|
|
if filling > 0 and self.filling:
|
|
|
|
global_indices = torch.cat((global_indices, global_indices[:filling]))
|
|
|
|
global_indices = tuple(global_indices.numpy().tolist())
|
|
|
|
|
|
|
|
seps = torch.linspace(0, len(global_indices), self.world_size + 1, dtype=torch.int)
|
|
|
|
local_indices = global_indices[seps[self.rank]:seps[self.rank + 1]]
|
|
|
|
self.max_p = len(local_indices)
|
|
|
|
return local_indices
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
self.epoch = 0
|
|
|
|
while True:
|
|
|
|
self.epoch += 1
|
|
|
|
p, q = 0, 0
|
|
|
|
while p < self.max_p:
|
|
|
|
q = p + self.batch_size
|
|
|
|
yield self.indices[p:q]
|
|
|
|
p = q
|
|
|
|
if self.shuffle:
|
|
|
|
self.indices = self.gener_indices()
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.iters_per_ep
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
W = 16
|
|
|
|
for rk in range(W):
|
|
|
|
ind = DistInfiniteBatchSampler(W, rk, 5024, 5024).gener_indices()
|
|
|
|
print(rk, len(ind))
|