## Installation [MMDetection with commit 6a979e2](https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/tree/6a979e2164e3fb0de0ca2546545013a4d71b2f7d) before fine-tuning ConvNeXt on COCO
We refer to the codebases of [ConvNeXt](https://github.com/facebookresearch/ConvNeXt/tree/048efcea897d999aed302f2639b6270aedf8d4c8) and [Swin-Transformer-Object-Detection](https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/tree/6a979e2164e3fb0de0ca2546545013a4d71b2f7d).
Please refer to [README.md](https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/6a979e2164e3fb0de0ca2546545013a4d71b2f7d/README.md) for installation and dataset preparation instructions.
Note the COCO dataset folder should be at `downstream_mmdet/data/coco`.
The Mask R-CNN 3x fine-tuning config file can be found at [`configs/convnext_spark`](configs/convnext_spark). This config is basically a copy of [https://github.com/facebookresearch/ConvNeXt/blob/main/object_detection/configs/convnext/mask_rcnn_convnext_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco_in1k.py](https://github.com/facebookresearch/ConvNeXt/blob/main/object_detection/configs/convnext/mask_rcnn_convnext_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco_in1k.py).