You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
62 lines
2.7 KiB
62 lines
2.7 KiB
2 years ago
|
# Copyright (c) ByteDance, Inc. and its affiliates.
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
import math
|
||
|
from pprint import pformat
|
||
|
|
||
|
|
||
|
def lr_wd_annealing(optimizer, peak_lr, wd, cur_it, wp_it, max_it):
|
||
|
wp_it = round(wp_it)
|
||
|
if cur_it < wp_it:
|
||
|
cur_lr = 0.005 * peak_lr + 0.995 * peak_lr * cur_it / wp_it
|
||
|
else:
|
||
|
ratio = (cur_it - wp_it) / (max_it - 1 - wp_it)
|
||
|
cur_lr = 0.001 * peak_lr + 0.999 * peak_lr * (0.5 + 0.5 * math.cos(math.pi * ratio))
|
||
|
|
||
|
min_lr, max_lr = cur_lr, cur_lr
|
||
|
min_wd, max_wd = wd, wd
|
||
|
for param_group in optimizer.param_groups:
|
||
|
scaled_lr = param_group['lr'] = cur_lr * param_group.get('lr_scale', 1) # 'lr_scale' could be assigned
|
||
|
min_lr, max_lr = min(min_lr, scaled_lr), max(max_lr, scaled_lr)
|
||
|
scaled_wd = param_group['weight_decay'] = wd * param_group.get('weight_decay_scale', 1) # 'weight_decay_scale' could be assigned
|
||
|
min_wd, max_wd = min(min_wd, scaled_wd), max(max_wd, scaled_wd)
|
||
|
return min_lr, max_lr, min_wd, max_wd
|
||
|
|
||
|
|
||
|
def get_param_groups(model, nowd_keys=(), lr_scale=0.0):
|
||
|
using_lr_scale = hasattr(model, 'get_layer_id_and_scale_exp') and 0.0 < lr_scale < 1.0
|
||
|
print(f'[get_ft_param_groups][lr decay] using_lr_scale={using_lr_scale}, ft_lr_scale={lr_scale}')
|
||
|
para_groups, para_groups_dbg = {}, {}
|
||
|
|
||
|
for name, para in model.named_parameters():
|
||
|
if not para.requires_grad:
|
||
|
continue # frozen weights
|
||
|
if len(para.shape) == 1 or name.endswith('.bias') or any(k in name for k in nowd_keys):
|
||
|
wd_scale, group_name = 0., 'no_decay'
|
||
|
else:
|
||
|
wd_scale, group_name = 1., 'decay'
|
||
|
|
||
|
if using_lr_scale:
|
||
|
layer_id, scale_exp = model.get_layer_id_and_scale_exp(name)
|
||
|
group_name = f'layer{layer_id}_' + group_name
|
||
|
this_lr_scale = lr_scale ** scale_exp
|
||
|
dbg = f'[layer {layer_id}][sc = {lr_scale} ** {scale_exp}]'
|
||
|
else:
|
||
|
this_lr_scale = 1
|
||
|
dbg = f'[no scale]'
|
||
|
|
||
|
if group_name not in para_groups:
|
||
|
para_groups[group_name] = {'params': [], 'weight_decay_scale': wd_scale, 'lr_scale': this_lr_scale}
|
||
|
para_groups_dbg[group_name] = {'params': [], 'weight_decay_scale': wd_scale, 'lr_scale': dbg}
|
||
|
para_groups[group_name]['params'].append(para)
|
||
|
para_groups_dbg[group_name]['params'].append(name)
|
||
|
|
||
|
for g in para_groups_dbg.values():
|
||
|
g['params'] = pformat(', '.join(g['params']), width=200)
|
||
|
|
||
|
print(f'[get_ft_param_groups] param groups = \n{pformat(para_groups_dbg, indent=2, width=250)}\n')
|
||
|
return list(para_groups.values())
|