|
|
|
# Copyright (c) ByteDance, Inc. and its affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
#
|
|
|
|
# This file is basically a copy of: https://github.com/facebookresearch/ConvNeXt/blob/06f7b05f922e21914916406141f50f82b4a15852/models/convnext.py
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from timm.models.layers import trunc_normal_
|
|
|
|
from timm.models.registry import register_model
|
|
|
|
|
|
|
|
from encoder import SparseConvNeXtBlock, SparseConvNeXtLayerNorm
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNeXt(nn.Module):
|
|
|
|
r""" ConvNeXt
|
|
|
|
A PyTorch impl of : `A ConvNet for the 2020s` -
|
|
|
|
https://arxiv.org/pdf/2201.03545.pdf
|
|
|
|
Args:
|
|
|
|
in_chans (int): Number of input image channels. Default: 3
|
|
|
|
num_classes (int): Number of classes for classification head. Default: 1000
|
|
|
|
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
|
|
|
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
|
|
|
|
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
|
|
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
|
|
|
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_chans=3, num_classes=1000,
|
|
|
|
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.,
|
|
|
|
layer_scale_init_value=1e-6, head_init_scale=1., global_pool='avg',
|
|
|
|
sparse=True,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
|
|
|
|
stem = nn.Sequential(
|
|
|
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
|
|
|
|
SparseConvNeXtLayerNorm(dims[0], eps=1e-6, data_format="channels_first", sparse=sparse)
|
|
|
|
)
|
|
|
|
self.downsample_layers.append(stem)
|
|
|
|
for i in range(3):
|
|
|
|
downsample_layer = nn.Sequential(
|
|
|
|
SparseConvNeXtLayerNorm(dims[i], eps=1e-6, data_format="channels_first", sparse=sparse),
|
|
|
|
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
|
|
|
|
)
|
|
|
|
self.downsample_layers.append(downsample_layer)
|
|
|
|
|
|
|
|
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
|
|
|
|
self.drop_path_rate = drop_path_rate
|
|
|
|
self.layer_scale_init_value = layer_scale_init_value
|
|
|
|
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
|
|
|
cur = 0
|
|
|
|
for i in range(4):
|
|
|
|
stage = nn.Sequential(
|
|
|
|
*[SparseConvNeXtBlock(dim=dims[i], drop_path=dp_rates[cur + j],
|
|
|
|
layer_scale_init_value=layer_scale_init_value, sparse=sparse) for j in range(depths[i])]
|
|
|
|
)
|
|
|
|
self.stages.append(stage)
|
|
|
|
cur += depths[i]
|
|
|
|
self.depths = depths
|
|
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
if num_classes > 0:
|
|
|
|
self.norm = SparseConvNeXtLayerNorm(dims[-1], eps=1e-6, sparse=False) # final norm layer for LE/FT; should not be sparse
|
|
|
|
self.fc = nn.Linear(dims[-1], num_classes)
|
|
|
|
else:
|
|
|
|
self.norm = nn.Identity()
|
|
|
|
self.fc = nn.Identity()
|
|
|
|
|
|
|
|
def _init_weights(self, m):
|
|
|
|
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
|
|
|
trunc_normal_(m.weight, std=.02)
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
|
|
|
|
def forward(self, x, hierarchy=0):
|
|
|
|
ls = []
|
|
|
|
for i in range(4):
|
|
|
|
x = self.downsample_layers[i](x)
|
|
|
|
x = self.stages[i](x)
|
|
|
|
ls.append(x if hierarchy >= 4-i else None)
|
|
|
|
if hierarchy:
|
|
|
|
return ls
|
|
|
|
else:
|
|
|
|
return self.fc(self.norm(x.mean([-2, -1]))) # (B, C, H, W) =mean=> (B, C) =norm&fc=> (B, NumCls)
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.fc
|
|
|
|
|
|
|
|
def extra_repr(self):
|
|
|
|
return f'drop_path_rate={self.drop_path_rate}, layer_scale_init_value={self.layer_scale_init_value:g}'
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_tiny(pretrained=False, in_22k=False, **kwargs):
|
|
|
|
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_small(pretrained=False, in_22k=False, **kwargs):
|
|
|
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_base(pretrained=False, in_22k=False, **kwargs):
|
|
|
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convnext_large(pretrained=False, in_22k=False, **kwargs):
|
|
|
|
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
from timm.models import create_model
|
|
|
|
cnx = create_model('convnext_small', sparse=False)
|
|
|
|
|
|
|
|
def prt(lst):
|
|
|
|
print([tuple(t.shape) if t is not None else '(None)' for t in lst])
|
|
|
|
with torch.no_grad():
|
|
|
|
inp = torch.rand(2, 3, 224, 224)
|
|
|
|
prt(cnx(inp))
|
|
|
|
prt(cnx(inp, hierarchy=1))
|
|
|
|
prt(cnx(inp, hierarchy=2))
|
|
|
|
prt(cnx(inp, hierarchy=3))
|
|
|
|
prt(cnx(inp, hierarchy=4))
|