|
|
|
# Copyright (c) ByteDance, Inc. and its affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
import math
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from timm.models.layers import trunc_normal_
|
|
|
|
|
|
|
|
from utils.misc import is_pow2n
|
|
|
|
|
|
|
|
|
|
|
|
class UNetBlock(nn.Module):
|
|
|
|
def __init__(self, cin, cout, bn2d):
|
|
|
|
"""
|
|
|
|
a UNet block with 2x up sampling
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
self.up_sample = nn.ConvTranspose2d(cin, cin, kernel_size=4, stride=2, padding=1, bias=True)
|
|
|
|
self.conv = nn.Sequential(
|
|
|
|
nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=False), bn2d(cin), nn.ReLU6(inplace=True),
|
|
|
|
nn.Conv2d(cin, cout, kernel_size=3, stride=1, padding=1, bias=False), bn2d(cout),
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.up_sample(x)
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
|
|
|
|
|
|
class LightDecoder(nn.Module):
|
|
|
|
def __init__(self, up_sample_ratio, width=768, sbn=True):
|
|
|
|
super().__init__()
|
|
|
|
self.width = width
|
|
|
|
assert is_pow2n(up_sample_ratio)
|
|
|
|
n = round(math.log2(up_sample_ratio))
|
|
|
|
channels = [self.width // 2 ** i for i in range(n + 1)]
|
|
|
|
bn2d = nn.SyncBatchNorm if sbn else nn.BatchNorm2d
|
|
|
|
self.dec = nn.ModuleList([UNetBlock(cin, cout, bn2d) for (cin, cout) in zip(channels[:-1], channels[1:])])
|
|
|
|
self.proj = nn.Conv2d(channels[-1], 3, kernel_size=1, stride=1, bias=True)
|
|
|
|
|
|
|
|
self.initialize()
|
|
|
|
|
|
|
|
def forward(self, to_dec: List[torch.Tensor]):
|
|
|
|
x = 0
|
|
|
|
for i, d in enumerate(self.dec):
|
|
|
|
if i < len(to_dec) and to_dec[i] is not None:
|
|
|
|
x = x + to_dec[i]
|
|
|
|
x = self.dec[i](x)
|
|
|
|
return self.proj(x)
|
|
|
|
|
|
|
|
def extra_repr(self) -> str:
|
|
|
|
return f'width={self.width}'
|
|
|
|
|
|
|
|
def initialize(self):
|
|
|
|
for m in self.modules():
|
|
|
|
if isinstance(m, nn.Linear):
|
|
|
|
trunc_normal_(m.weight, std=.02)
|
|
|
|
if m.bias is not None:
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
elif isinstance(m, nn.Conv2d):
|
|
|
|
trunc_normal_(m.weight, std=.02)
|
|
|
|
if m.bias is not None:
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
elif isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
|
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
|
|
if m.bias is not None:
|
|
|
|
nn.init.constant_(m.bias, 0.)
|
|
|
|
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm1d, nn.BatchNorm2d, nn.SyncBatchNorm)):
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
nn.init.constant_(m.weight, 1.0)
|