You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1141 lines
39 KiB
1141 lines
39 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file implements some commonly used actions. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
|
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
|
|
|
#ifndef _WIN32_WCE |
|
# include <errno.h> |
|
#endif |
|
|
|
#include <algorithm> |
|
#include <functional> |
|
#include <memory> |
|
#include <string> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
#include "gmock/internal/gmock-internal-utils.h" |
|
#include "gmock/internal/gmock-port.h" |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(push) |
|
# pragma warning(disable:4100) |
|
#endif |
|
|
|
namespace testing { |
|
|
|
// To implement an action Foo, define: |
|
// 1. a class FooAction that implements the ActionInterface interface, and |
|
// 2. a factory function that creates an Action object from a |
|
// const FooAction*. |
|
// |
|
// The two-level delegation design follows that of Matcher, providing |
|
// consistency for extension developers. It also eases ownership |
|
// management as Action objects can now be copied like plain values. |
|
|
|
namespace internal { |
|
|
|
// BuiltInDefaultValueGetter<T, true>::Get() returns a |
|
// default-constructed T value. BuiltInDefaultValueGetter<T, |
|
// false>::Get() crashes with an error. |
|
// |
|
// This primary template is used when kDefaultConstructible is true. |
|
template <typename T, bool kDefaultConstructible> |
|
struct BuiltInDefaultValueGetter { |
|
static T Get() { return T(); } |
|
}; |
|
template <typename T> |
|
struct BuiltInDefaultValueGetter<T, false> { |
|
static T Get() { |
|
Assert(false, __FILE__, __LINE__, |
|
"Default action undefined for the function return type."); |
|
return internal::Invalid<T>(); |
|
// The above statement will never be reached, but is required in |
|
// order for this function to compile. |
|
} |
|
}; |
|
|
|
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value |
|
// for type T, which is NULL when T is a raw pointer type, 0 when T is |
|
// a numeric type, false when T is bool, or "" when T is string or |
|
// std::string. In addition, in C++11 and above, it turns a |
|
// default-constructed T value if T is default constructible. For any |
|
// other type T, the built-in default T value is undefined, and the |
|
// function will abort the process. |
|
template <typename T> |
|
class BuiltInDefaultValue { |
|
public: |
|
// This function returns true if type T has a built-in default value. |
|
static bool Exists() { |
|
return ::std::is_default_constructible<T>::value; |
|
} |
|
|
|
static T Get() { |
|
return BuiltInDefaultValueGetter< |
|
T, ::std::is_default_constructible<T>::value>::Get(); |
|
} |
|
}; |
|
|
|
// This partial specialization says that we use the same built-in |
|
// default value for T and const T. |
|
template <typename T> |
|
class BuiltInDefaultValue<const T> { |
|
public: |
|
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } |
|
static T Get() { return BuiltInDefaultValue<T>::Get(); } |
|
}; |
|
|
|
// This partial specialization defines the default values for pointer |
|
// types. |
|
template <typename T> |
|
class BuiltInDefaultValue<T*> { |
|
public: |
|
static bool Exists() { return true; } |
|
static T* Get() { return nullptr; } |
|
}; |
|
|
|
// The following specializations define the default values for |
|
// specific types we care about. |
|
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ |
|
template <> \ |
|
class BuiltInDefaultValue<type> { \ |
|
public: \ |
|
static bool Exists() { return true; } \ |
|
static type Get() { return value; } \ |
|
} |
|
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); |
|
|
|
// There's no need for a default action for signed wchar_t, as that |
|
// type is the same as wchar_t for gcc, and invalid for MSVC. |
|
// |
|
// There's also no need for a default action for unsigned wchar_t, as |
|
// that type is the same as unsigned int for gcc, and invalid for |
|
// MSVC. |
|
#if GMOCK_WCHAR_T_IS_NATIVE_ |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT |
|
#endif |
|
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); |
|
|
|
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ |
|
|
|
} // namespace internal |
|
|
|
// When an unexpected function call is encountered, Google Mock will |
|
// let it return a default value if the user has specified one for its |
|
// return type, or if the return type has a built-in default value; |
|
// otherwise Google Mock won't know what value to return and will have |
|
// to abort the process. |
|
// |
|
// The DefaultValue<T> class allows a user to specify the |
|
// default value for a type T that is both copyable and publicly |
|
// destructible (i.e. anything that can be used as a function return |
|
// type). The usage is: |
|
// |
|
// // Sets the default value for type T to be foo. |
|
// DefaultValue<T>::Set(foo); |
|
template <typename T> |
|
class DefaultValue { |
|
public: |
|
// Sets the default value for type T; requires T to be |
|
// copy-constructable and have a public destructor. |
|
static void Set(T x) { |
|
delete producer_; |
|
producer_ = new FixedValueProducer(x); |
|
} |
|
|
|
// Provides a factory function to be called to generate the default value. |
|
// This method can be used even if T is only move-constructible, but it is not |
|
// limited to that case. |
|
typedef T (*FactoryFunction)(); |
|
static void SetFactory(FactoryFunction factory) { |
|
delete producer_; |
|
producer_ = new FactoryValueProducer(factory); |
|
} |
|
|
|
// Unsets the default value for type T. |
|
static void Clear() { |
|
delete producer_; |
|
producer_ = nullptr; |
|
} |
|
|
|
// Returns true if the user has set the default value for type T. |
|
static bool IsSet() { return producer_ != nullptr; } |
|
|
|
// Returns true if T has a default return value set by the user or there |
|
// exists a built-in default value. |
|
static bool Exists() { |
|
return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); |
|
} |
|
|
|
// Returns the default value for type T if the user has set one; |
|
// otherwise returns the built-in default value. Requires that Exists() |
|
// is true, which ensures that the return value is well-defined. |
|
static T Get() { |
|
return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() |
|
: producer_->Produce(); |
|
} |
|
|
|
private: |
|
class ValueProducer { |
|
public: |
|
virtual ~ValueProducer() {} |
|
virtual T Produce() = 0; |
|
}; |
|
|
|
class FixedValueProducer : public ValueProducer { |
|
public: |
|
explicit FixedValueProducer(T value) : value_(value) {} |
|
T Produce() override { return value_; } |
|
|
|
private: |
|
const T value_; |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); |
|
}; |
|
|
|
class FactoryValueProducer : public ValueProducer { |
|
public: |
|
explicit FactoryValueProducer(FactoryFunction factory) |
|
: factory_(factory) {} |
|
T Produce() override { return factory_(); } |
|
|
|
private: |
|
const FactoryFunction factory_; |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); |
|
}; |
|
|
|
static ValueProducer* producer_; |
|
}; |
|
|
|
// This partial specialization allows a user to set default values for |
|
// reference types. |
|
template <typename T> |
|
class DefaultValue<T&> { |
|
public: |
|
// Sets the default value for type T&. |
|
static void Set(T& x) { // NOLINT |
|
address_ = &x; |
|
} |
|
|
|
// Unsets the default value for type T&. |
|
static void Clear() { address_ = nullptr; } |
|
|
|
// Returns true if the user has set the default value for type T&. |
|
static bool IsSet() { return address_ != nullptr; } |
|
|
|
// Returns true if T has a default return value set by the user or there |
|
// exists a built-in default value. |
|
static bool Exists() { |
|
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); |
|
} |
|
|
|
// Returns the default value for type T& if the user has set one; |
|
// otherwise returns the built-in default value if there is one; |
|
// otherwise aborts the process. |
|
static T& Get() { |
|
return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() |
|
: *address_; |
|
} |
|
|
|
private: |
|
static T* address_; |
|
}; |
|
|
|
// This specialization allows DefaultValue<void>::Get() to |
|
// compile. |
|
template <> |
|
class DefaultValue<void> { |
|
public: |
|
static bool Exists() { return true; } |
|
static void Get() {} |
|
}; |
|
|
|
// Points to the user-set default value for type T. |
|
template <typename T> |
|
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; |
|
|
|
// Points to the user-set default value for type T&. |
|
template <typename T> |
|
T* DefaultValue<T&>::address_ = nullptr; |
|
|
|
// Implement this interface to define an action for function type F. |
|
template <typename F> |
|
class ActionInterface { |
|
public: |
|
typedef typename internal::Function<F>::Result Result; |
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
ActionInterface() {} |
|
virtual ~ActionInterface() {} |
|
|
|
// Performs the action. This method is not const, as in general an |
|
// action can have side effects and be stateful. For example, a |
|
// get-the-next-element-from-the-collection action will need to |
|
// remember the current element. |
|
virtual Result Perform(const ArgumentTuple& args) = 0; |
|
|
|
private: |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); |
|
}; |
|
|
|
// An Action<F> is a copyable and IMMUTABLE (except by assignment) |
|
// object that represents an action to be taken when a mock function |
|
// of type F is called. The implementation of Action<T> is just a |
|
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! |
|
// You can view an object implementing ActionInterface<F> as a |
|
// concrete action (including its current state), and an Action<F> |
|
// object as a handle to it. |
|
template <typename F> |
|
class Action { |
|
// Adapter class to allow constructing Action from a legacy ActionInterface. |
|
// New code should create Actions from functors instead. |
|
struct ActionAdapter { |
|
// Adapter must be copyable to satisfy std::function requirements. |
|
::std::shared_ptr<ActionInterface<F>> impl_; |
|
|
|
template <typename... Args> |
|
typename internal::Function<F>::Result operator()(Args&&... args) { |
|
return impl_->Perform( |
|
::std::forward_as_tuple(::std::forward<Args>(args)...)); |
|
} |
|
}; |
|
|
|
public: |
|
typedef typename internal::Function<F>::Result Result; |
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
// Constructs a null Action. Needed for storing Action objects in |
|
// STL containers. |
|
Action() {} |
|
|
|
// Construct an Action from a specified callable. |
|
// This cannot take std::function directly, because then Action would not be |
|
// directly constructible from lambda (it would require two conversions). |
|
template <typename G, |
|
typename = typename ::std::enable_if< |
|
::std::is_constructible<::std::function<F>, G>::value>::type> |
|
Action(G&& fun) : fun_(::std::forward<G>(fun)) {} // NOLINT |
|
|
|
// Constructs an Action from its implementation. |
|
explicit Action(ActionInterface<F>* impl) |
|
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} |
|
|
|
// This constructor allows us to turn an Action<Func> object into an |
|
// Action<F>, as long as F's arguments can be implicitly converted |
|
// to Func's and Func's return type can be implicitly converted to F's. |
|
template <typename Func> |
|
explicit Action(const Action<Func>& action) : fun_(action.fun_) {} |
|
|
|
// Returns true if this is the DoDefault() action. |
|
bool IsDoDefault() const { return fun_ == nullptr; } |
|
|
|
// Performs the action. Note that this method is const even though |
|
// the corresponding method in ActionInterface is not. The reason |
|
// is that a const Action<F> means that it cannot be re-bound to |
|
// another concrete action, not that the concrete action it binds to |
|
// cannot change state. (Think of the difference between a const |
|
// pointer and a pointer to const.) |
|
Result Perform(ArgumentTuple args) const { |
|
if (IsDoDefault()) { |
|
internal::IllegalDoDefault(__FILE__, __LINE__); |
|
} |
|
return internal::Apply(fun_, ::std::move(args)); |
|
} |
|
|
|
private: |
|
template <typename G> |
|
friend class Action; |
|
|
|
// fun_ is an empty function if this is the DoDefault() action. |
|
::std::function<F> fun_; |
|
}; |
|
|
|
// The PolymorphicAction class template makes it easy to implement a |
|
// polymorphic action (i.e. an action that can be used in mock |
|
// functions of than one type, e.g. Return()). |
|
// |
|
// To define a polymorphic action, a user first provides a COPYABLE |
|
// implementation class that has a Perform() method template: |
|
// |
|
// class FooAction { |
|
// public: |
|
// template <typename Result, typename ArgumentTuple> |
|
// Result Perform(const ArgumentTuple& args) const { |
|
// // Processes the arguments and returns a result, using |
|
// // std::get<N>(args) to get the N-th (0-based) argument in the tuple. |
|
// } |
|
// ... |
|
// }; |
|
// |
|
// Then the user creates the polymorphic action using |
|
// MakePolymorphicAction(object) where object has type FooAction. See |
|
// the definition of Return(void) and SetArgumentPointee<N>(value) for |
|
// complete examples. |
|
template <typename Impl> |
|
class PolymorphicAction { |
|
public: |
|
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} |
|
|
|
template <typename F> |
|
operator Action<F>() const { |
|
return Action<F>(new MonomorphicImpl<F>(impl_)); |
|
} |
|
|
|
private: |
|
template <typename F> |
|
class MonomorphicImpl : public ActionInterface<F> { |
|
public: |
|
typedef typename internal::Function<F>::Result Result; |
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
|
|
|
Result Perform(const ArgumentTuple& args) override { |
|
return impl_.template Perform<Result>(args); |
|
} |
|
|
|
private: |
|
Impl impl_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); |
|
}; |
|
|
|
Impl impl_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(PolymorphicAction); |
|
}; |
|
|
|
// Creates an Action from its implementation and returns it. The |
|
// created Action object owns the implementation. |
|
template <typename F> |
|
Action<F> MakeAction(ActionInterface<F>* impl) { |
|
return Action<F>(impl); |
|
} |
|
|
|
// Creates a polymorphic action from its implementation. This is |
|
// easier to use than the PolymorphicAction<Impl> constructor as it |
|
// doesn't require you to explicitly write the template argument, e.g. |
|
// |
|
// MakePolymorphicAction(foo); |
|
// vs |
|
// PolymorphicAction<TypeOfFoo>(foo); |
|
template <typename Impl> |
|
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { |
|
return PolymorphicAction<Impl>(impl); |
|
} |
|
|
|
namespace internal { |
|
|
|
// Helper struct to specialize ReturnAction to execute a move instead of a copy |
|
// on return. Useful for move-only types, but could be used on any type. |
|
template <typename T> |
|
struct ByMoveWrapper { |
|
explicit ByMoveWrapper(T value) : payload(std::move(value)) {} |
|
T payload; |
|
}; |
|
|
|
// Implements the polymorphic Return(x) action, which can be used in |
|
// any function that returns the type of x, regardless of the argument |
|
// types. |
|
// |
|
// Note: The value passed into Return must be converted into |
|
// Function<F>::Result when this action is cast to Action<F> rather than |
|
// when that action is performed. This is important in scenarios like |
|
// |
|
// MOCK_METHOD1(Method, T(U)); |
|
// ... |
|
// { |
|
// Foo foo; |
|
// X x(&foo); |
|
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); |
|
// } |
|
// |
|
// In the example above the variable x holds reference to foo which leaves |
|
// scope and gets destroyed. If copying X just copies a reference to foo, |
|
// that copy will be left with a hanging reference. If conversion to T |
|
// makes a copy of foo, the above code is safe. To support that scenario, we |
|
// need to make sure that the type conversion happens inside the EXPECT_CALL |
|
// statement, and conversion of the result of Return to Action<T(U)> is a |
|
// good place for that. |
|
// |
|
// The real life example of the above scenario happens when an invocation |
|
// of gtl::Container() is passed into Return. |
|
// |
|
template <typename R> |
|
class ReturnAction { |
|
public: |
|
// Constructs a ReturnAction object from the value to be returned. |
|
// 'value' is passed by value instead of by const reference in order |
|
// to allow Return("string literal") to compile. |
|
explicit ReturnAction(R value) : value_(new R(std::move(value))) {} |
|
|
|
// This template type conversion operator allows Return(x) to be |
|
// used in ANY function that returns x's type. |
|
template <typename F> |
|
operator Action<F>() const { // NOLINT |
|
// Assert statement belongs here because this is the best place to verify |
|
// conditions on F. It produces the clearest error messages |
|
// in most compilers. |
|
// Impl really belongs in this scope as a local class but can't |
|
// because MSVC produces duplicate symbols in different translation units |
|
// in this case. Until MS fixes that bug we put Impl into the class scope |
|
// and put the typedef both here (for use in assert statement) and |
|
// in the Impl class. But both definitions must be the same. |
|
typedef typename Function<F>::Result Result; |
|
GTEST_COMPILE_ASSERT_( |
|
!std::is_reference<Result>::value, |
|
use_ReturnRef_instead_of_Return_to_return_a_reference); |
|
static_assert(!std::is_void<Result>::value, |
|
"Can't use Return() on an action expected to return `void`."); |
|
return Action<F>(new Impl<R, F>(value_)); |
|
} |
|
|
|
private: |
|
// Implements the Return(x) action for a particular function type F. |
|
template <typename R_, typename F> |
|
class Impl : public ActionInterface<F> { |
|
public: |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
// The implicit cast is necessary when Result has more than one |
|
// single-argument constructor (e.g. Result is std::vector<int>) and R |
|
// has a type conversion operator template. In that case, value_(value) |
|
// won't compile as the compiler doesn't known which constructor of |
|
// Result to call. ImplicitCast_ forces the compiler to convert R to |
|
// Result without considering explicit constructors, thus resolving the |
|
// ambiguity. value_ is then initialized using its copy constructor. |
|
explicit Impl(const std::shared_ptr<R>& value) |
|
: value_before_cast_(*value), |
|
value_(ImplicitCast_<Result>(value_before_cast_)) {} |
|
|
|
Result Perform(const ArgumentTuple&) override { return value_; } |
|
|
|
private: |
|
GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, |
|
Result_cannot_be_a_reference_type); |
|
// We save the value before casting just in case it is being cast to a |
|
// wrapper type. |
|
R value_before_cast_; |
|
Result value_; |
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
|
}; |
|
|
|
// Partially specialize for ByMoveWrapper. This version of ReturnAction will |
|
// move its contents instead. |
|
template <typename R_, typename F> |
|
class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { |
|
public: |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit Impl(const std::shared_ptr<R>& wrapper) |
|
: performed_(false), wrapper_(wrapper) {} |
|
|
|
Result Perform(const ArgumentTuple&) override { |
|
GTEST_CHECK_(!performed_) |
|
<< "A ByMove() action should only be performed once."; |
|
performed_ = true; |
|
return std::move(wrapper_->payload); |
|
} |
|
|
|
private: |
|
bool performed_; |
|
const std::shared_ptr<R> wrapper_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl); |
|
}; |
|
|
|
const std::shared_ptr<R> value_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(ReturnAction); |
|
}; |
|
|
|
// Implements the ReturnNull() action. |
|
class ReturnNullAction { |
|
public: |
|
// Allows ReturnNull() to be used in any pointer-returning function. In C++11 |
|
// this is enforced by returning nullptr, and in non-C++11 by asserting a |
|
// pointer type on compile time. |
|
template <typename Result, typename ArgumentTuple> |
|
static Result Perform(const ArgumentTuple&) { |
|
return nullptr; |
|
} |
|
}; |
|
|
|
// Implements the Return() action. |
|
class ReturnVoidAction { |
|
public: |
|
// Allows Return() to be used in any void-returning function. |
|
template <typename Result, typename ArgumentTuple> |
|
static void Perform(const ArgumentTuple&) { |
|
CompileAssertTypesEqual<void, Result>(); |
|
} |
|
}; |
|
|
|
// Implements the polymorphic ReturnRef(x) action, which can be used |
|
// in any function that returns a reference to the type of x, |
|
// regardless of the argument types. |
|
template <typename T> |
|
class ReturnRefAction { |
|
public: |
|
// Constructs a ReturnRefAction object from the reference to be returned. |
|
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT |
|
|
|
// This template type conversion operator allows ReturnRef(x) to be |
|
// used in ANY function that returns a reference to x's type. |
|
template <typename F> |
|
operator Action<F>() const { |
|
typedef typename Function<F>::Result Result; |
|
// Asserts that the function return type is a reference. This |
|
// catches the user error of using ReturnRef(x) when Return(x) |
|
// should be used, and generates some helpful error message. |
|
GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, |
|
use_Return_instead_of_ReturnRef_to_return_a_value); |
|
return Action<F>(new Impl<F>(ref_)); |
|
} |
|
|
|
private: |
|
// Implements the ReturnRef(x) action for a particular function type F. |
|
template <typename F> |
|
class Impl : public ActionInterface<F> { |
|
public: |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit Impl(T& ref) : ref_(ref) {} // NOLINT |
|
|
|
Result Perform(const ArgumentTuple&) override { return ref_; } |
|
|
|
private: |
|
T& ref_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl); |
|
}; |
|
|
|
T& ref_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(ReturnRefAction); |
|
}; |
|
|
|
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be |
|
// used in any function that returns a reference to the type of x, |
|
// regardless of the argument types. |
|
template <typename T> |
|
class ReturnRefOfCopyAction { |
|
public: |
|
// Constructs a ReturnRefOfCopyAction object from the reference to |
|
// be returned. |
|
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT |
|
|
|
// This template type conversion operator allows ReturnRefOfCopy(x) to be |
|
// used in ANY function that returns a reference to x's type. |
|
template <typename F> |
|
operator Action<F>() const { |
|
typedef typename Function<F>::Result Result; |
|
// Asserts that the function return type is a reference. This |
|
// catches the user error of using ReturnRefOfCopy(x) when Return(x) |
|
// should be used, and generates some helpful error message. |
|
GTEST_COMPILE_ASSERT_( |
|
std::is_reference<Result>::value, |
|
use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); |
|
return Action<F>(new Impl<F>(value_)); |
|
} |
|
|
|
private: |
|
// Implements the ReturnRefOfCopy(x) action for a particular function type F. |
|
template <typename F> |
|
class Impl : public ActionInterface<F> { |
|
public: |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit Impl(const T& value) : value_(value) {} // NOLINT |
|
|
|
Result Perform(const ArgumentTuple&) override { return value_; } |
|
|
|
private: |
|
T value_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl); |
|
}; |
|
|
|
const T value_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); |
|
}; |
|
|
|
// Implements the polymorphic DoDefault() action. |
|
class DoDefaultAction { |
|
public: |
|
// This template type conversion operator allows DoDefault() to be |
|
// used in any function. |
|
template <typename F> |
|
operator Action<F>() const { return Action<F>(); } // NOLINT |
|
}; |
|
|
|
// Implements the Assign action to set a given pointer referent to a |
|
// particular value. |
|
template <typename T1, typename T2> |
|
class AssignAction { |
|
public: |
|
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} |
|
|
|
template <typename Result, typename ArgumentTuple> |
|
void Perform(const ArgumentTuple& /* args */) const { |
|
*ptr_ = value_; |
|
} |
|
|
|
private: |
|
T1* const ptr_; |
|
const T2 value_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(AssignAction); |
|
}; |
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE |
|
|
|
// Implements the SetErrnoAndReturn action to simulate return from |
|
// various system calls and libc functions. |
|
template <typename T> |
|
class SetErrnoAndReturnAction { |
|
public: |
|
SetErrnoAndReturnAction(int errno_value, T result) |
|
: errno_(errno_value), |
|
result_(result) {} |
|
template <typename Result, typename ArgumentTuple> |
|
Result Perform(const ArgumentTuple& /* args */) const { |
|
errno = errno_; |
|
return result_; |
|
} |
|
|
|
private: |
|
const int errno_; |
|
const T result_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction); |
|
}; |
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE |
|
|
|
// Implements the SetArgumentPointee<N>(x) action for any function |
|
// whose N-th argument (0-based) is a pointer to x's type. |
|
template <size_t N, typename A, typename = void> |
|
struct SetArgumentPointeeAction { |
|
A value; |
|
|
|
template <typename... Args> |
|
void operator()(const Args&... args) const { |
|
*::std::get<N>(std::tie(args...)) = value; |
|
} |
|
}; |
|
|
|
// Implements the Invoke(object_ptr, &Class::Method) action. |
|
template <class Class, typename MethodPtr> |
|
struct InvokeMethodAction { |
|
Class* const obj_ptr; |
|
const MethodPtr method_ptr; |
|
|
|
template <typename... Args> |
|
auto operator()(Args&&... args) const |
|
-> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { |
|
return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); |
|
} |
|
}; |
|
|
|
// Implements the InvokeWithoutArgs(f) action. The template argument |
|
// FunctionImpl is the implementation type of f, which can be either a |
|
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an |
|
// Action<F> as long as f's type is compatible with F. |
|
template <typename FunctionImpl> |
|
struct InvokeWithoutArgsAction { |
|
FunctionImpl function_impl; |
|
|
|
// Allows InvokeWithoutArgs(f) to be used as any action whose type is |
|
// compatible with f. |
|
template <typename... Args> |
|
auto operator()(const Args&...) -> decltype(function_impl()) { |
|
return function_impl(); |
|
} |
|
}; |
|
|
|
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. |
|
template <class Class, typename MethodPtr> |
|
struct InvokeMethodWithoutArgsAction { |
|
Class* const obj_ptr; |
|
const MethodPtr method_ptr; |
|
|
|
using ReturnType = typename std::result_of<MethodPtr(Class*)>::type; |
|
|
|
template <typename... Args> |
|
ReturnType operator()(const Args&...) const { |
|
return (obj_ptr->*method_ptr)(); |
|
} |
|
}; |
|
|
|
// Implements the IgnoreResult(action) action. |
|
template <typename A> |
|
class IgnoreResultAction { |
|
public: |
|
explicit IgnoreResultAction(const A& action) : action_(action) {} |
|
|
|
template <typename F> |
|
operator Action<F>() const { |
|
// Assert statement belongs here because this is the best place to verify |
|
// conditions on F. It produces the clearest error messages |
|
// in most compilers. |
|
// Impl really belongs in this scope as a local class but can't |
|
// because MSVC produces duplicate symbols in different translation units |
|
// in this case. Until MS fixes that bug we put Impl into the class scope |
|
// and put the typedef both here (for use in assert statement) and |
|
// in the Impl class. But both definitions must be the same. |
|
typedef typename internal::Function<F>::Result Result; |
|
|
|
// Asserts at compile time that F returns void. |
|
CompileAssertTypesEqual<void, Result>(); |
|
|
|
return Action<F>(new Impl<F>(action_)); |
|
} |
|
|
|
private: |
|
template <typename F> |
|
class Impl : public ActionInterface<F> { |
|
public: |
|
typedef typename internal::Function<F>::Result Result; |
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit Impl(const A& action) : action_(action) {} |
|
|
|
void Perform(const ArgumentTuple& args) override { |
|
// Performs the action and ignores its result. |
|
action_.Perform(args); |
|
} |
|
|
|
private: |
|
// Type OriginalFunction is the same as F except that its return |
|
// type is IgnoredValue. |
|
typedef typename internal::Function<F>::MakeResultIgnoredValue |
|
OriginalFunction; |
|
|
|
const Action<OriginalFunction> action_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl); |
|
}; |
|
|
|
const A action_; |
|
|
|
GTEST_DISALLOW_ASSIGN_(IgnoreResultAction); |
|
}; |
|
|
|
template <typename InnerAction, size_t... I> |
|
struct WithArgsAction { |
|
InnerAction action; |
|
|
|
// The inner action could be anything convertible to Action<X>. |
|
// We use the conversion operator to detect the signature of the inner Action. |
|
template <typename R, typename... Args> |
|
operator Action<R(Args...)>() const { // NOLINT |
|
Action<R(typename std::tuple_element<I, std::tuple<Args...>>::type...)> |
|
converted(action); |
|
|
|
return [converted](Args... args) -> R { |
|
return converted.Perform(std::forward_as_tuple( |
|
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); |
|
}; |
|
} |
|
}; |
|
|
|
template <typename... Actions> |
|
struct DoAllAction { |
|
private: |
|
template <typename... Args, size_t... I> |
|
std::vector<Action<void(Args...)>> Convert(IndexSequence<I...>) const { |
|
return {std::get<I>(actions)...}; |
|
} |
|
|
|
public: |
|
std::tuple<Actions...> actions; |
|
|
|
template <typename R, typename... Args> |
|
operator Action<R(Args...)>() const { // NOLINT |
|
struct Op { |
|
std::vector<Action<void(Args...)>> converted; |
|
Action<R(Args...)> last; |
|
R operator()(Args... args) const { |
|
auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); |
|
for (auto& a : converted) { |
|
a.Perform(tuple_args); |
|
} |
|
return last.Perform(tuple_args); |
|
} |
|
}; |
|
return Op{Convert<Args...>(MakeIndexSequence<sizeof...(Actions) - 1>()), |
|
std::get<sizeof...(Actions) - 1>(actions)}; |
|
} |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// An Unused object can be implicitly constructed from ANY value. |
|
// This is handy when defining actions that ignore some or all of the |
|
// mock function arguments. For example, given |
|
// |
|
// MOCK_METHOD3(Foo, double(const string& label, double x, double y)); |
|
// MOCK_METHOD3(Bar, double(int index, double x, double y)); |
|
// |
|
// instead of |
|
// |
|
// double DistanceToOriginWithLabel(const string& label, double x, double y) { |
|
// return sqrt(x*x + y*y); |
|
// } |
|
// double DistanceToOriginWithIndex(int index, double x, double y) { |
|
// return sqrt(x*x + y*y); |
|
// } |
|
// ... |
|
// EXPECT_CALL(mock, Foo("abc", _, _)) |
|
// .WillOnce(Invoke(DistanceToOriginWithLabel)); |
|
// EXPECT_CALL(mock, Bar(5, _, _)) |
|
// .WillOnce(Invoke(DistanceToOriginWithIndex)); |
|
// |
|
// you could write |
|
// |
|
// // We can declare any uninteresting argument as Unused. |
|
// double DistanceToOrigin(Unused, double x, double y) { |
|
// return sqrt(x*x + y*y); |
|
// } |
|
// ... |
|
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); |
|
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); |
|
typedef internal::IgnoredValue Unused; |
|
|
|
// Creates an action that does actions a1, a2, ..., sequentially in |
|
// each invocation. |
|
template <typename... Action> |
|
internal::DoAllAction<typename std::decay<Action>::type...> DoAll( |
|
Action&&... action) { |
|
return {std::forward_as_tuple(std::forward<Action>(action)...)}; |
|
} |
|
|
|
// WithArg<k>(an_action) creates an action that passes the k-th |
|
// (0-based) argument of the mock function to an_action and performs |
|
// it. It adapts an action accepting one argument to one that accepts |
|
// multiple arguments. For convenience, we also provide |
|
// WithArgs<k>(an_action) (defined below) as a synonym. |
|
template <size_t k, typename InnerAction> |
|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k> |
|
WithArg(InnerAction&& action) { |
|
return {std::forward<InnerAction>(action)}; |
|
} |
|
|
|
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes |
|
// the selected arguments of the mock function to an_action and |
|
// performs it. It serves as an adaptor between actions with |
|
// different argument lists. |
|
template <size_t k, size_t... ks, typename InnerAction> |
|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> |
|
WithArgs(InnerAction&& action) { |
|
return {std::forward<InnerAction>(action)}; |
|
} |
|
|
|
// WithoutArgs(inner_action) can be used in a mock function with a |
|
// non-empty argument list to perform inner_action, which takes no |
|
// argument. In other words, it adapts an action accepting no |
|
// argument to one that accepts (and ignores) arguments. |
|
template <typename InnerAction> |
|
internal::WithArgsAction<typename std::decay<InnerAction>::type> |
|
WithoutArgs(InnerAction&& action) { |
|
return {std::forward<InnerAction>(action)}; |
|
} |
|
|
|
// Creates an action that returns 'value'. 'value' is passed by value |
|
// instead of const reference - otherwise Return("string literal") |
|
// will trigger a compiler error about using array as initializer. |
|
template <typename R> |
|
internal::ReturnAction<R> Return(R value) { |
|
return internal::ReturnAction<R>(std::move(value)); |
|
} |
|
|
|
// Creates an action that returns NULL. |
|
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { |
|
return MakePolymorphicAction(internal::ReturnNullAction()); |
|
} |
|
|
|
// Creates an action that returns from a void function. |
|
inline PolymorphicAction<internal::ReturnVoidAction> Return() { |
|
return MakePolymorphicAction(internal::ReturnVoidAction()); |
|
} |
|
|
|
// Creates an action that returns the reference to a variable. |
|
template <typename R> |
|
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT |
|
return internal::ReturnRefAction<R>(x); |
|
} |
|
|
|
// Creates an action that returns the reference to a copy of the |
|
// argument. The copy is created when the action is constructed and |
|
// lives as long as the action. |
|
template <typename R> |
|
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { |
|
return internal::ReturnRefOfCopyAction<R>(x); |
|
} |
|
|
|
// Modifies the parent action (a Return() action) to perform a move of the |
|
// argument instead of a copy. |
|
// Return(ByMove()) actions can only be executed once and will assert this |
|
// invariant. |
|
template <typename R> |
|
internal::ByMoveWrapper<R> ByMove(R x) { |
|
return internal::ByMoveWrapper<R>(std::move(x)); |
|
} |
|
|
|
// Creates an action that does the default action for the give mock function. |
|
inline internal::DoDefaultAction DoDefault() { |
|
return internal::DoDefaultAction(); |
|
} |
|
|
|
// Creates an action that sets the variable pointed by the N-th |
|
// (0-based) function argument to 'value'. |
|
template <size_t N, typename T> |
|
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T x) { |
|
return {std::move(x)}; |
|
} |
|
|
|
// The following version is DEPRECATED. |
|
template <size_t N, typename T> |
|
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T x) { |
|
return {std::move(x)}; |
|
} |
|
|
|
// Creates an action that sets a pointer referent to a given value. |
|
template <typename T1, typename T2> |
|
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { |
|
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); |
|
} |
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE |
|
|
|
// Creates an action that sets errno and returns the appropriate error. |
|
template <typename T> |
|
PolymorphicAction<internal::SetErrnoAndReturnAction<T> > |
|
SetErrnoAndReturn(int errval, T result) { |
|
return MakePolymorphicAction( |
|
internal::SetErrnoAndReturnAction<T>(errval, result)); |
|
} |
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE |
|
|
|
// Various overloads for Invoke(). |
|
|
|
// Legacy function. |
|
// Actions can now be implicitly constructed from callables. No need to create |
|
// wrapper objects. |
|
// This function exists for backwards compatibility. |
|
template <typename FunctionImpl> |
|
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { |
|
return std::forward<FunctionImpl>(function_impl); |
|
} |
|
|
|
// Creates an action that invokes the given method on the given object |
|
// with the mock function's arguments. |
|
template <class Class, typename MethodPtr> |
|
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, |
|
MethodPtr method_ptr) { |
|
return {obj_ptr, method_ptr}; |
|
} |
|
|
|
// Creates an action that invokes 'function_impl' with no argument. |
|
template <typename FunctionImpl> |
|
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> |
|
InvokeWithoutArgs(FunctionImpl function_impl) { |
|
return {std::move(function_impl)}; |
|
} |
|
|
|
// Creates an action that invokes the given method on the given object |
|
// with no argument. |
|
template <class Class, typename MethodPtr> |
|
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( |
|
Class* obj_ptr, MethodPtr method_ptr) { |
|
return {obj_ptr, method_ptr}; |
|
} |
|
|
|
// Creates an action that performs an_action and throws away its |
|
// result. In other words, it changes the return type of an_action to |
|
// void. an_action MUST NOT return void, or the code won't compile. |
|
template <typename A> |
|
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { |
|
return internal::IgnoreResultAction<A>(an_action); |
|
} |
|
|
|
// Creates a reference wrapper for the given L-value. If necessary, |
|
// you can explicitly specify the type of the reference. For example, |
|
// suppose 'derived' is an object of type Derived, ByRef(derived) |
|
// would wrap a Derived&. If you want to wrap a const Base& instead, |
|
// where Base is a base class of Derived, just write: |
|
// |
|
// ByRef<const Base>(derived) |
|
// |
|
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. |
|
// However, it may still be used for consistency with ByMove(). |
|
template <typename T> |
|
inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT |
|
return ::std::reference_wrapper<T>(l_value); |
|
} |
|
|
|
} // namespace testing |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(pop) |
|
#endif |
|
|
|
|
|
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|
|
|