You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
6792 lines
219 KiB
6792 lines
219 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file tests some commonly used argument matchers. |
|
|
|
// Silence warning C4244: 'initializing': conversion from 'int' to 'short', |
|
// possible loss of data and C4100, unreferenced local parameter |
|
#ifdef _MSC_VER |
|
# pragma warning(push) |
|
# pragma warning(disable:4244) |
|
# pragma warning(disable:4100) |
|
#endif |
|
|
|
#include "gmock/gmock-matchers.h" |
|
#include "gmock/gmock-more-matchers.h" |
|
|
|
#include <string.h> |
|
#include <time.h> |
|
#include <deque> |
|
#include <forward_list> |
|
#include <functional> |
|
#include <iostream> |
|
#include <iterator> |
|
#include <limits> |
|
#include <list> |
|
#include <map> |
|
#include <memory> |
|
#include <set> |
|
#include <sstream> |
|
#include <string> |
|
#include <type_traits> |
|
#include <utility> |
|
#include <vector> |
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "gtest/gtest-spi.h" |
|
|
|
namespace testing { |
|
namespace gmock_matchers_test { |
|
namespace { |
|
|
|
using std::greater; |
|
using std::less; |
|
using std::list; |
|
using std::make_pair; |
|
using std::map; |
|
using std::multimap; |
|
using std::multiset; |
|
using std::ostream; |
|
using std::pair; |
|
using std::set; |
|
using std::stringstream; |
|
using std::vector; |
|
using testing::internal::DummyMatchResultListener; |
|
using testing::internal::ElementMatcherPair; |
|
using testing::internal::ElementMatcherPairs; |
|
using testing::internal::ExplainMatchFailureTupleTo; |
|
using testing::internal::FloatingEqMatcher; |
|
using testing::internal::FormatMatcherDescription; |
|
using testing::internal::IsReadableTypeName; |
|
using testing::internal::MatchMatrix; |
|
using testing::internal::PredicateFormatterFromMatcher; |
|
using testing::internal::RE; |
|
using testing::internal::StreamMatchResultListener; |
|
using testing::internal::Strings; |
|
|
|
// Helper for testing container-valued matchers in mock method context. It is |
|
// important to test matchers in this context, since it requires additional type |
|
// deduction beyond what EXPECT_THAT does, thus making it more restrictive. |
|
struct ContainerHelper { |
|
MOCK_METHOD1(Call, void(std::vector<std::unique_ptr<int>>)); |
|
}; |
|
|
|
std::vector<std::unique_ptr<int>> MakeUniquePtrs(const std::vector<int>& ints) { |
|
std::vector<std::unique_ptr<int>> pointers; |
|
for (int i : ints) pointers.emplace_back(new int(i)); |
|
return pointers; |
|
} |
|
|
|
// For testing ExplainMatchResultTo(). |
|
class GreaterThanMatcher : public MatcherInterface<int> { |
|
public: |
|
explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {} |
|
|
|
void DescribeTo(ostream* os) const override { *os << "is > " << rhs_; } |
|
|
|
bool MatchAndExplain(int lhs, MatchResultListener* listener) const override { |
|
const int diff = lhs - rhs_; |
|
if (diff > 0) { |
|
*listener << "which is " << diff << " more than " << rhs_; |
|
} else if (diff == 0) { |
|
*listener << "which is the same as " << rhs_; |
|
} else { |
|
*listener << "which is " << -diff << " less than " << rhs_; |
|
} |
|
|
|
return lhs > rhs_; |
|
} |
|
|
|
private: |
|
int rhs_; |
|
}; |
|
|
|
Matcher<int> GreaterThan(int n) { |
|
return MakeMatcher(new GreaterThanMatcher(n)); |
|
} |
|
|
|
std::string OfType(const std::string& type_name) { |
|
#if GTEST_HAS_RTTI |
|
return " (of type " + type_name + ")"; |
|
#else |
|
return ""; |
|
#endif |
|
} |
|
|
|
// Returns the description of the given matcher. |
|
template <typename T> |
|
std::string Describe(const Matcher<T>& m) { |
|
return DescribeMatcher<T>(m); |
|
} |
|
|
|
// Returns the description of the negation of the given matcher. |
|
template <typename T> |
|
std::string DescribeNegation(const Matcher<T>& m) { |
|
return DescribeMatcher<T>(m, true); |
|
} |
|
|
|
// Returns the reason why x matches, or doesn't match, m. |
|
template <typename MatcherType, typename Value> |
|
std::string Explain(const MatcherType& m, const Value& x) { |
|
StringMatchResultListener listener; |
|
ExplainMatchResult(m, x, &listener); |
|
return listener.str(); |
|
} |
|
|
|
TEST(MonotonicMatcherTest, IsPrintable) { |
|
stringstream ss; |
|
ss << GreaterThan(5); |
|
EXPECT_EQ("is > 5", ss.str()); |
|
} |
|
|
|
TEST(MatchResultListenerTest, StreamingWorks) { |
|
StringMatchResultListener listener; |
|
listener << "hi" << 5; |
|
EXPECT_EQ("hi5", listener.str()); |
|
|
|
listener.Clear(); |
|
EXPECT_EQ("", listener.str()); |
|
|
|
listener << 42; |
|
EXPECT_EQ("42", listener.str()); |
|
|
|
// Streaming shouldn't crash when the underlying ostream is NULL. |
|
DummyMatchResultListener dummy; |
|
dummy << "hi" << 5; |
|
} |
|
|
|
TEST(MatchResultListenerTest, CanAccessUnderlyingStream) { |
|
EXPECT_TRUE(DummyMatchResultListener().stream() == nullptr); |
|
EXPECT_TRUE(StreamMatchResultListener(nullptr).stream() == nullptr); |
|
|
|
EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream()); |
|
} |
|
|
|
TEST(MatchResultListenerTest, IsInterestedWorks) { |
|
EXPECT_TRUE(StringMatchResultListener().IsInterested()); |
|
EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested()); |
|
|
|
EXPECT_FALSE(DummyMatchResultListener().IsInterested()); |
|
EXPECT_FALSE(StreamMatchResultListener(nullptr).IsInterested()); |
|
} |
|
|
|
// Makes sure that the MatcherInterface<T> interface doesn't |
|
// change. |
|
class EvenMatcherImpl : public MatcherInterface<int> { |
|
public: |
|
bool MatchAndExplain(int x, |
|
MatchResultListener* /* listener */) const override { |
|
return x % 2 == 0; |
|
} |
|
|
|
void DescribeTo(ostream* os) const override { *os << "is an even number"; } |
|
|
|
// We deliberately don't define DescribeNegationTo() and |
|
// ExplainMatchResultTo() here, to make sure the definition of these |
|
// two methods is optional. |
|
}; |
|
|
|
// Makes sure that the MatcherInterface API doesn't change. |
|
TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) { |
|
EvenMatcherImpl m; |
|
} |
|
|
|
// Tests implementing a monomorphic matcher using MatchAndExplain(). |
|
|
|
class NewEvenMatcherImpl : public MatcherInterface<int> { |
|
public: |
|
bool MatchAndExplain(int x, MatchResultListener* listener) const override { |
|
const bool match = x % 2 == 0; |
|
// Verifies that we can stream to a listener directly. |
|
*listener << "value % " << 2; |
|
if (listener->stream() != nullptr) { |
|
// Verifies that we can stream to a listener's underlying stream |
|
// too. |
|
*listener->stream() << " == " << (x % 2); |
|
} |
|
return match; |
|
} |
|
|
|
void DescribeTo(ostream* os) const override { *os << "is an even number"; } |
|
}; |
|
|
|
TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) { |
|
Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl); |
|
EXPECT_TRUE(m.Matches(2)); |
|
EXPECT_FALSE(m.Matches(3)); |
|
EXPECT_EQ("value % 2 == 0", Explain(m, 2)); |
|
EXPECT_EQ("value % 2 == 1", Explain(m, 3)); |
|
} |
|
|
|
// Tests default-constructing a matcher. |
|
TEST(MatcherTest, CanBeDefaultConstructed) { |
|
Matcher<double> m; |
|
} |
|
|
|
// Tests that Matcher<T> can be constructed from a MatcherInterface<T>*. |
|
TEST(MatcherTest, CanBeConstructedFromMatcherInterface) { |
|
const MatcherInterface<int>* impl = new EvenMatcherImpl; |
|
Matcher<int> m(impl); |
|
EXPECT_TRUE(m.Matches(4)); |
|
EXPECT_FALSE(m.Matches(5)); |
|
} |
|
|
|
// Tests that value can be used in place of Eq(value). |
|
TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) { |
|
Matcher<int> m1 = 5; |
|
EXPECT_TRUE(m1.Matches(5)); |
|
EXPECT_FALSE(m1.Matches(6)); |
|
} |
|
|
|
// Tests that NULL can be used in place of Eq(NULL). |
|
TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) { |
|
Matcher<int*> m1 = nullptr; |
|
EXPECT_TRUE(m1.Matches(nullptr)); |
|
int n = 0; |
|
EXPECT_FALSE(m1.Matches(&n)); |
|
} |
|
|
|
// Tests that matchers can be constructed from a variable that is not properly |
|
// defined. This should be illegal, but many users rely on this accidentally. |
|
struct Undefined { |
|
virtual ~Undefined() = 0; |
|
static const int kInt = 1; |
|
}; |
|
|
|
TEST(MatcherTest, CanBeConstructedFromUndefinedVariable) { |
|
Matcher<int> m1 = Undefined::kInt; |
|
EXPECT_TRUE(m1.Matches(1)); |
|
EXPECT_FALSE(m1.Matches(2)); |
|
} |
|
|
|
// Test that a matcher parameterized with an abstract class compiles. |
|
TEST(MatcherTest, CanAcceptAbstractClass) { Matcher<const Undefined&> m = _; } |
|
|
|
// Tests that matchers are copyable. |
|
TEST(MatcherTest, IsCopyable) { |
|
// Tests the copy constructor. |
|
Matcher<bool> m1 = Eq(false); |
|
EXPECT_TRUE(m1.Matches(false)); |
|
EXPECT_FALSE(m1.Matches(true)); |
|
|
|
// Tests the assignment operator. |
|
m1 = Eq(true); |
|
EXPECT_TRUE(m1.Matches(true)); |
|
EXPECT_FALSE(m1.Matches(false)); |
|
} |
|
|
|
// Tests that Matcher<T>::DescribeTo() calls |
|
// MatcherInterface<T>::DescribeTo(). |
|
TEST(MatcherTest, CanDescribeItself) { |
|
EXPECT_EQ("is an even number", |
|
Describe(Matcher<int>(new EvenMatcherImpl))); |
|
} |
|
|
|
// Tests Matcher<T>::MatchAndExplain(). |
|
TEST(MatcherTest, MatchAndExplain) { |
|
Matcher<int> m = GreaterThan(0); |
|
StringMatchResultListener listener1; |
|
EXPECT_TRUE(m.MatchAndExplain(42, &listener1)); |
|
EXPECT_EQ("which is 42 more than 0", listener1.str()); |
|
|
|
StringMatchResultListener listener2; |
|
EXPECT_FALSE(m.MatchAndExplain(-9, &listener2)); |
|
EXPECT_EQ("which is 9 less than 0", listener2.str()); |
|
} |
|
|
|
// Tests that a C-string literal can be implicitly converted to a |
|
// Matcher<std::string> or Matcher<const std::string&>. |
|
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { |
|
Matcher<std::string> m1 = "hi"; |
|
EXPECT_TRUE(m1.Matches("hi")); |
|
EXPECT_FALSE(m1.Matches("hello")); |
|
|
|
Matcher<const std::string&> m2 = "hi"; |
|
EXPECT_TRUE(m2.Matches("hi")); |
|
EXPECT_FALSE(m2.Matches("hello")); |
|
} |
|
|
|
// Tests that a string object can be implicitly converted to a |
|
// Matcher<std::string> or Matcher<const std::string&>. |
|
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) { |
|
Matcher<std::string> m1 = std::string("hi"); |
|
EXPECT_TRUE(m1.Matches("hi")); |
|
EXPECT_FALSE(m1.Matches("hello")); |
|
|
|
Matcher<const std::string&> m2 = std::string("hi"); |
|
EXPECT_TRUE(m2.Matches("hi")); |
|
EXPECT_FALSE(m2.Matches("hello")); |
|
} |
|
|
|
#if GTEST_HAS_ABSL |
|
// Tests that a C-string literal can be implicitly converted to a |
|
// Matcher<absl::string_view> or Matcher<const absl::string_view&>. |
|
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { |
|
Matcher<absl::string_view> m1 = "cats"; |
|
EXPECT_TRUE(m1.Matches("cats")); |
|
EXPECT_FALSE(m1.Matches("dogs")); |
|
|
|
Matcher<const absl::string_view&> m2 = "cats"; |
|
EXPECT_TRUE(m2.Matches("cats")); |
|
EXPECT_FALSE(m2.Matches("dogs")); |
|
} |
|
|
|
// Tests that a std::string object can be implicitly converted to a |
|
// Matcher<absl::string_view> or Matcher<const absl::string_view&>. |
|
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromString) { |
|
Matcher<absl::string_view> m1 = std::string("cats"); |
|
EXPECT_TRUE(m1.Matches("cats")); |
|
EXPECT_FALSE(m1.Matches("dogs")); |
|
|
|
Matcher<const absl::string_view&> m2 = std::string("cats"); |
|
EXPECT_TRUE(m2.Matches("cats")); |
|
EXPECT_FALSE(m2.Matches("dogs")); |
|
} |
|
|
|
// Tests that a absl::string_view object can be implicitly converted to a |
|
// Matcher<absl::string_view> or Matcher<const absl::string_view&>. |
|
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromStringView) { |
|
Matcher<absl::string_view> m1 = absl::string_view("cats"); |
|
EXPECT_TRUE(m1.Matches("cats")); |
|
EXPECT_FALSE(m1.Matches("dogs")); |
|
|
|
Matcher<const absl::string_view&> m2 = absl::string_view("cats"); |
|
EXPECT_TRUE(m2.Matches("cats")); |
|
EXPECT_FALSE(m2.Matches("dogs")); |
|
} |
|
#endif // GTEST_HAS_ABSL |
|
|
|
// Tests that a std::reference_wrapper<std::string> object can be implicitly |
|
// converted to a Matcher<std::string> or Matcher<const std::string&> via Eq(). |
|
TEST(StringMatcherTest, |
|
CanBeImplicitlyConstructedFromEqReferenceWrapperString) { |
|
std::string value = "cats"; |
|
Matcher<std::string> m1 = Eq(std::ref(value)); |
|
EXPECT_TRUE(m1.Matches("cats")); |
|
EXPECT_FALSE(m1.Matches("dogs")); |
|
|
|
Matcher<const std::string&> m2 = Eq(std::ref(value)); |
|
EXPECT_TRUE(m2.Matches("cats")); |
|
EXPECT_FALSE(m2.Matches("dogs")); |
|
} |
|
|
|
// Tests that MakeMatcher() constructs a Matcher<T> from a |
|
// MatcherInterface* without requiring the user to explicitly |
|
// write the type. |
|
TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) { |
|
const MatcherInterface<int>* dummy_impl = nullptr; |
|
Matcher<int> m = MakeMatcher(dummy_impl); |
|
} |
|
|
|
// Tests that MakePolymorphicMatcher() can construct a polymorphic |
|
// matcher from its implementation using the old API. |
|
const int g_bar = 1; |
|
class ReferencesBarOrIsZeroImpl { |
|
public: |
|
template <typename T> |
|
bool MatchAndExplain(const T& x, |
|
MatchResultListener* /* listener */) const { |
|
const void* p = &x; |
|
return p == &g_bar || x == 0; |
|
} |
|
|
|
void DescribeTo(ostream* os) const { *os << "g_bar or zero"; } |
|
|
|
void DescribeNegationTo(ostream* os) const { |
|
*os << "doesn't reference g_bar and is not zero"; |
|
} |
|
}; |
|
|
|
// This function verifies that MakePolymorphicMatcher() returns a |
|
// PolymorphicMatcher<T> where T is the argument's type. |
|
PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() { |
|
return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl()); |
|
} |
|
|
|
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) { |
|
// Using a polymorphic matcher to match a reference type. |
|
Matcher<const int&> m1 = ReferencesBarOrIsZero(); |
|
EXPECT_TRUE(m1.Matches(0)); |
|
// Verifies that the identity of a by-reference argument is preserved. |
|
EXPECT_TRUE(m1.Matches(g_bar)); |
|
EXPECT_FALSE(m1.Matches(1)); |
|
EXPECT_EQ("g_bar or zero", Describe(m1)); |
|
|
|
// Using a polymorphic matcher to match a value type. |
|
Matcher<double> m2 = ReferencesBarOrIsZero(); |
|
EXPECT_TRUE(m2.Matches(0.0)); |
|
EXPECT_FALSE(m2.Matches(0.1)); |
|
EXPECT_EQ("g_bar or zero", Describe(m2)); |
|
} |
|
|
|
// Tests implementing a polymorphic matcher using MatchAndExplain(). |
|
|
|
class PolymorphicIsEvenImpl { |
|
public: |
|
void DescribeTo(ostream* os) const { *os << "is even"; } |
|
|
|
void DescribeNegationTo(ostream* os) const { |
|
*os << "is odd"; |
|
} |
|
|
|
template <typename T> |
|
bool MatchAndExplain(const T& x, MatchResultListener* listener) const { |
|
// Verifies that we can stream to the listener directly. |
|
*listener << "% " << 2; |
|
if (listener->stream() != nullptr) { |
|
// Verifies that we can stream to the listener's underlying stream |
|
// too. |
|
*listener->stream() << " == " << (x % 2); |
|
} |
|
return (x % 2) == 0; |
|
} |
|
}; |
|
|
|
PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() { |
|
return MakePolymorphicMatcher(PolymorphicIsEvenImpl()); |
|
} |
|
|
|
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) { |
|
// Using PolymorphicIsEven() as a Matcher<int>. |
|
const Matcher<int> m1 = PolymorphicIsEven(); |
|
EXPECT_TRUE(m1.Matches(42)); |
|
EXPECT_FALSE(m1.Matches(43)); |
|
EXPECT_EQ("is even", Describe(m1)); |
|
|
|
const Matcher<int> not_m1 = Not(m1); |
|
EXPECT_EQ("is odd", Describe(not_m1)); |
|
|
|
EXPECT_EQ("% 2 == 0", Explain(m1, 42)); |
|
|
|
// Using PolymorphicIsEven() as a Matcher<char>. |
|
const Matcher<char> m2 = PolymorphicIsEven(); |
|
EXPECT_TRUE(m2.Matches('\x42')); |
|
EXPECT_FALSE(m2.Matches('\x43')); |
|
EXPECT_EQ("is even", Describe(m2)); |
|
|
|
const Matcher<char> not_m2 = Not(m2); |
|
EXPECT_EQ("is odd", Describe(not_m2)); |
|
|
|
EXPECT_EQ("% 2 == 0", Explain(m2, '\x42')); |
|
} |
|
|
|
// Tests that MatcherCast<T>(m) works when m is a polymorphic matcher. |
|
TEST(MatcherCastTest, FromPolymorphicMatcher) { |
|
Matcher<int> m = MatcherCast<int>(Eq(5)); |
|
EXPECT_TRUE(m.Matches(5)); |
|
EXPECT_FALSE(m.Matches(6)); |
|
} |
|
|
|
// For testing casting matchers between compatible types. |
|
class IntValue { |
|
public: |
|
// An int can be statically (although not implicitly) cast to a |
|
// IntValue. |
|
explicit IntValue(int a_value) : value_(a_value) {} |
|
|
|
int value() const { return value_; } |
|
private: |
|
int value_; |
|
}; |
|
|
|
// For testing casting matchers between compatible types. |
|
bool IsPositiveIntValue(const IntValue& foo) { |
|
return foo.value() > 0; |
|
} |
|
|
|
// Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T |
|
// can be statically converted to U. |
|
TEST(MatcherCastTest, FromCompatibleType) { |
|
Matcher<double> m1 = Eq(2.0); |
|
Matcher<int> m2 = MatcherCast<int>(m1); |
|
EXPECT_TRUE(m2.Matches(2)); |
|
EXPECT_FALSE(m2.Matches(3)); |
|
|
|
Matcher<IntValue> m3 = Truly(IsPositiveIntValue); |
|
Matcher<int> m4 = MatcherCast<int>(m3); |
|
// In the following, the arguments 1 and 0 are statically converted |
|
// to IntValue objects, and then tested by the IsPositiveIntValue() |
|
// predicate. |
|
EXPECT_TRUE(m4.Matches(1)); |
|
EXPECT_FALSE(m4.Matches(0)); |
|
} |
|
|
|
// Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>. |
|
TEST(MatcherCastTest, FromConstReferenceToNonReference) { |
|
Matcher<const int&> m1 = Eq(0); |
|
Matcher<int> m2 = MatcherCast<int>(m1); |
|
EXPECT_TRUE(m2.Matches(0)); |
|
EXPECT_FALSE(m2.Matches(1)); |
|
} |
|
|
|
// Tests that MatcherCast<T>(m) works when m is a Matcher<T&>. |
|
TEST(MatcherCastTest, FromReferenceToNonReference) { |
|
Matcher<int&> m1 = Eq(0); |
|
Matcher<int> m2 = MatcherCast<int>(m1); |
|
EXPECT_TRUE(m2.Matches(0)); |
|
EXPECT_FALSE(m2.Matches(1)); |
|
} |
|
|
|
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>. |
|
TEST(MatcherCastTest, FromNonReferenceToConstReference) { |
|
Matcher<int> m1 = Eq(0); |
|
Matcher<const int&> m2 = MatcherCast<const int&>(m1); |
|
EXPECT_TRUE(m2.Matches(0)); |
|
EXPECT_FALSE(m2.Matches(1)); |
|
} |
|
|
|
// Tests that MatcherCast<T&>(m) works when m is a Matcher<T>. |
|
TEST(MatcherCastTest, FromNonReferenceToReference) { |
|
Matcher<int> m1 = Eq(0); |
|
Matcher<int&> m2 = MatcherCast<int&>(m1); |
|
int n = 0; |
|
EXPECT_TRUE(m2.Matches(n)); |
|
n = 1; |
|
EXPECT_FALSE(m2.Matches(n)); |
|
} |
|
|
|
// Tests that MatcherCast<T>(m) works when m is a Matcher<T>. |
|
TEST(MatcherCastTest, FromSameType) { |
|
Matcher<int> m1 = Eq(0); |
|
Matcher<int> m2 = MatcherCast<int>(m1); |
|
EXPECT_TRUE(m2.Matches(0)); |
|
EXPECT_FALSE(m2.Matches(1)); |
|
} |
|
|
|
// Tests that MatcherCast<T>(m) works when m is a value of the same type as the |
|
// value type of the Matcher. |
|
TEST(MatcherCastTest, FromAValue) { |
|
Matcher<int> m = MatcherCast<int>(42); |
|
EXPECT_TRUE(m.Matches(42)); |
|
EXPECT_FALSE(m.Matches(239)); |
|
} |
|
|
|
// Tests that MatcherCast<T>(m) works when m is a value of the type implicitly |
|
// convertible to the value type of the Matcher. |
|
TEST(MatcherCastTest, FromAnImplicitlyConvertibleValue) { |
|
const int kExpected = 'c'; |
|
Matcher<int> m = MatcherCast<int>('c'); |
|
EXPECT_TRUE(m.Matches(kExpected)); |
|
EXPECT_FALSE(m.Matches(kExpected + 1)); |
|
} |
|
|
|
struct NonImplicitlyConstructibleTypeWithOperatorEq { |
|
friend bool operator==( |
|
const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */, |
|
int rhs) { |
|
return 42 == rhs; |
|
} |
|
friend bool operator==( |
|
int lhs, |
|
const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */) { |
|
return lhs == 42; |
|
} |
|
}; |
|
|
|
// Tests that MatcherCast<T>(m) works when m is a neither a matcher nor |
|
// implicitly convertible to the value type of the Matcher, but the value type |
|
// of the matcher has operator==() overload accepting m. |
|
TEST(MatcherCastTest, NonImplicitlyConstructibleTypeWithOperatorEq) { |
|
Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m1 = |
|
MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(42); |
|
EXPECT_TRUE(m1.Matches(NonImplicitlyConstructibleTypeWithOperatorEq())); |
|
|
|
Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m2 = |
|
MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(239); |
|
EXPECT_FALSE(m2.Matches(NonImplicitlyConstructibleTypeWithOperatorEq())); |
|
|
|
// When updating the following lines please also change the comment to |
|
// namespace convertible_from_any. |
|
Matcher<int> m3 = |
|
MatcherCast<int>(NonImplicitlyConstructibleTypeWithOperatorEq()); |
|
EXPECT_TRUE(m3.Matches(42)); |
|
EXPECT_FALSE(m3.Matches(239)); |
|
} |
|
|
|
// ConvertibleFromAny does not work with MSVC. resulting in |
|
// error C2440: 'initializing': cannot convert from 'Eq' to 'M' |
|
// No constructor could take the source type, or constructor overload |
|
// resolution was ambiguous |
|
|
|
#if !defined _MSC_VER |
|
|
|
// The below ConvertibleFromAny struct is implicitly constructible from anything |
|
// and when in the same namespace can interact with other tests. In particular, |
|
// if it is in the same namespace as other tests and one removes |
|
// NonImplicitlyConstructibleTypeWithOperatorEq::operator==(int lhs, ...); |
|
// then the corresponding test still compiles (and it should not!) by implicitly |
|
// converting NonImplicitlyConstructibleTypeWithOperatorEq to ConvertibleFromAny |
|
// in m3.Matcher(). |
|
namespace convertible_from_any { |
|
// Implicitly convertible from any type. |
|
struct ConvertibleFromAny { |
|
ConvertibleFromAny(int a_value) : value(a_value) {} |
|
template <typename T> |
|
ConvertibleFromAny(const T& /*a_value*/) : value(-1) { |
|
ADD_FAILURE() << "Conversion constructor called"; |
|
} |
|
int value; |
|
}; |
|
|
|
bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) { |
|
return a.value == b.value; |
|
} |
|
|
|
ostream& operator<<(ostream& os, const ConvertibleFromAny& a) { |
|
return os << a.value; |
|
} |
|
|
|
TEST(MatcherCastTest, ConversionConstructorIsUsed) { |
|
Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1); |
|
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); |
|
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); |
|
} |
|
|
|
TEST(MatcherCastTest, FromConvertibleFromAny) { |
|
Matcher<ConvertibleFromAny> m = |
|
MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1))); |
|
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); |
|
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); |
|
} |
|
} // namespace convertible_from_any |
|
|
|
#endif // !defined _MSC_VER |
|
|
|
struct IntReferenceWrapper { |
|
IntReferenceWrapper(const int& a_value) : value(&a_value) {} |
|
const int* value; |
|
}; |
|
|
|
bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) { |
|
return a.value == b.value; |
|
} |
|
|
|
TEST(MatcherCastTest, ValueIsNotCopied) { |
|
int n = 42; |
|
Matcher<IntReferenceWrapper> m = MatcherCast<IntReferenceWrapper>(n); |
|
// Verify that the matcher holds a reference to n, not to its temporary copy. |
|
EXPECT_TRUE(m.Matches(n)); |
|
} |
|
|
|
class Base { |
|
public: |
|
virtual ~Base() {} |
|
Base() {} |
|
private: |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Base); |
|
}; |
|
|
|
class Derived : public Base { |
|
public: |
|
Derived() : Base() {} |
|
int i; |
|
}; |
|
|
|
class OtherDerived : public Base {}; |
|
|
|
// Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher. |
|
TEST(SafeMatcherCastTest, FromPolymorphicMatcher) { |
|
Matcher<char> m2 = SafeMatcherCast<char>(Eq(32)); |
|
EXPECT_TRUE(m2.Matches(' ')); |
|
EXPECT_FALSE(m2.Matches('\n')); |
|
} |
|
|
|
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where |
|
// T and U are arithmetic types and T can be losslessly converted to |
|
// U. |
|
TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) { |
|
Matcher<double> m1 = DoubleEq(1.0); |
|
Matcher<float> m2 = SafeMatcherCast<float>(m1); |
|
EXPECT_TRUE(m2.Matches(1.0f)); |
|
EXPECT_FALSE(m2.Matches(2.0f)); |
|
|
|
Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a')); |
|
EXPECT_TRUE(m3.Matches('a')); |
|
EXPECT_FALSE(m3.Matches('b')); |
|
} |
|
|
|
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U |
|
// are pointers or references to a derived and a base class, correspondingly. |
|
TEST(SafeMatcherCastTest, FromBaseClass) { |
|
Derived d, d2; |
|
Matcher<Base*> m1 = Eq(&d); |
|
Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1); |
|
EXPECT_TRUE(m2.Matches(&d)); |
|
EXPECT_FALSE(m2.Matches(&d2)); |
|
|
|
Matcher<Base&> m3 = Ref(d); |
|
Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3); |
|
EXPECT_TRUE(m4.Matches(d)); |
|
EXPECT_FALSE(m4.Matches(d2)); |
|
} |
|
|
|
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>. |
|
TEST(SafeMatcherCastTest, FromConstReferenceToReference) { |
|
int n = 0; |
|
Matcher<const int&> m1 = Ref(n); |
|
Matcher<int&> m2 = SafeMatcherCast<int&>(m1); |
|
int n1 = 0; |
|
EXPECT_TRUE(m2.Matches(n)); |
|
EXPECT_FALSE(m2.Matches(n1)); |
|
} |
|
|
|
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>. |
|
TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) { |
|
Matcher<int> m1 = Eq(0); |
|
Matcher<const int&> m2 = SafeMatcherCast<const int&>(m1); |
|
EXPECT_TRUE(m2.Matches(0)); |
|
EXPECT_FALSE(m2.Matches(1)); |
|
} |
|
|
|
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>. |
|
TEST(SafeMatcherCastTest, FromNonReferenceToReference) { |
|
Matcher<int> m1 = Eq(0); |
|
Matcher<int&> m2 = SafeMatcherCast<int&>(m1); |
|
int n = 0; |
|
EXPECT_TRUE(m2.Matches(n)); |
|
n = 1; |
|
EXPECT_FALSE(m2.Matches(n)); |
|
} |
|
|
|
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>. |
|
TEST(SafeMatcherCastTest, FromSameType) { |
|
Matcher<int> m1 = Eq(0); |
|
Matcher<int> m2 = SafeMatcherCast<int>(m1); |
|
EXPECT_TRUE(m2.Matches(0)); |
|
EXPECT_FALSE(m2.Matches(1)); |
|
} |
|
|
|
#if !defined _MSC_VER |
|
|
|
namespace convertible_from_any { |
|
TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) { |
|
Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1); |
|
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); |
|
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); |
|
} |
|
|
|
TEST(SafeMatcherCastTest, FromConvertibleFromAny) { |
|
Matcher<ConvertibleFromAny> m = |
|
SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1))); |
|
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); |
|
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); |
|
} |
|
} // namespace convertible_from_any |
|
|
|
#endif // !defined _MSC_VER |
|
|
|
TEST(SafeMatcherCastTest, ValueIsNotCopied) { |
|
int n = 42; |
|
Matcher<IntReferenceWrapper> m = SafeMatcherCast<IntReferenceWrapper>(n); |
|
// Verify that the matcher holds a reference to n, not to its temporary copy. |
|
EXPECT_TRUE(m.Matches(n)); |
|
} |
|
|
|
TEST(ExpectThat, TakesLiterals) { |
|
EXPECT_THAT(1, 1); |
|
EXPECT_THAT(1.0, 1.0); |
|
EXPECT_THAT(std::string(), ""); |
|
} |
|
|
|
TEST(ExpectThat, TakesFunctions) { |
|
struct Helper { |
|
static void Func() {} |
|
}; |
|
void (*func)() = Helper::Func; |
|
EXPECT_THAT(func, Helper::Func); |
|
EXPECT_THAT(func, &Helper::Func); |
|
} |
|
|
|
// Tests that A<T>() matches any value of type T. |
|
TEST(ATest, MatchesAnyValue) { |
|
// Tests a matcher for a value type. |
|
Matcher<double> m1 = A<double>(); |
|
EXPECT_TRUE(m1.Matches(91.43)); |
|
EXPECT_TRUE(m1.Matches(-15.32)); |
|
|
|
// Tests a matcher for a reference type. |
|
int a = 2; |
|
int b = -6; |
|
Matcher<int&> m2 = A<int&>(); |
|
EXPECT_TRUE(m2.Matches(a)); |
|
EXPECT_TRUE(m2.Matches(b)); |
|
} |
|
|
|
TEST(ATest, WorksForDerivedClass) { |
|
Base base; |
|
Derived derived; |
|
EXPECT_THAT(&base, A<Base*>()); |
|
// This shouldn't compile: EXPECT_THAT(&base, A<Derived*>()); |
|
EXPECT_THAT(&derived, A<Base*>()); |
|
EXPECT_THAT(&derived, A<Derived*>()); |
|
} |
|
|
|
// Tests that A<T>() describes itself properly. |
|
TEST(ATest, CanDescribeSelf) { |
|
EXPECT_EQ("is anything", Describe(A<bool>())); |
|
} |
|
|
|
// Tests that An<T>() matches any value of type T. |
|
TEST(AnTest, MatchesAnyValue) { |
|
// Tests a matcher for a value type. |
|
Matcher<int> m1 = An<int>(); |
|
EXPECT_TRUE(m1.Matches(9143)); |
|
EXPECT_TRUE(m1.Matches(-1532)); |
|
|
|
// Tests a matcher for a reference type. |
|
int a = 2; |
|
int b = -6; |
|
Matcher<int&> m2 = An<int&>(); |
|
EXPECT_TRUE(m2.Matches(a)); |
|
EXPECT_TRUE(m2.Matches(b)); |
|
} |
|
|
|
// Tests that An<T>() describes itself properly. |
|
TEST(AnTest, CanDescribeSelf) { |
|
EXPECT_EQ("is anything", Describe(An<int>())); |
|
} |
|
|
|
// Tests that _ can be used as a matcher for any type and matches any |
|
// value of that type. |
|
TEST(UnderscoreTest, MatchesAnyValue) { |
|
// Uses _ as a matcher for a value type. |
|
Matcher<int> m1 = _; |
|
EXPECT_TRUE(m1.Matches(123)); |
|
EXPECT_TRUE(m1.Matches(-242)); |
|
|
|
// Uses _ as a matcher for a reference type. |
|
bool a = false; |
|
const bool b = true; |
|
Matcher<const bool&> m2 = _; |
|
EXPECT_TRUE(m2.Matches(a)); |
|
EXPECT_TRUE(m2.Matches(b)); |
|
} |
|
|
|
// Tests that _ describes itself properly. |
|
TEST(UnderscoreTest, CanDescribeSelf) { |
|
Matcher<int> m = _; |
|
EXPECT_EQ("is anything", Describe(m)); |
|
} |
|
|
|
// Tests that Eq(x) matches any value equal to x. |
|
TEST(EqTest, MatchesEqualValue) { |
|
// 2 C-strings with same content but different addresses. |
|
const char a1[] = "hi"; |
|
const char a2[] = "hi"; |
|
|
|
Matcher<const char*> m1 = Eq(a1); |
|
EXPECT_TRUE(m1.Matches(a1)); |
|
EXPECT_FALSE(m1.Matches(a2)); |
|
} |
|
|
|
// Tests that Eq(v) describes itself properly. |
|
|
|
class Unprintable { |
|
public: |
|
Unprintable() : c_('a') {} |
|
|
|
bool operator==(const Unprintable& /* rhs */) const { return true; } |
|
// -Wunused-private-field: dummy accessor for `c_`. |
|
char dummy_c() { return c_; } |
|
private: |
|
char c_; |
|
}; |
|
|
|
TEST(EqTest, CanDescribeSelf) { |
|
Matcher<Unprintable> m = Eq(Unprintable()); |
|
EXPECT_EQ("is equal to 1-byte object <61>", Describe(m)); |
|
} |
|
|
|
// Tests that Eq(v) can be used to match any type that supports |
|
// comparing with type T, where T is v's type. |
|
TEST(EqTest, IsPolymorphic) { |
|
Matcher<int> m1 = Eq(1); |
|
EXPECT_TRUE(m1.Matches(1)); |
|
EXPECT_FALSE(m1.Matches(2)); |
|
|
|
Matcher<char> m2 = Eq(1); |
|
EXPECT_TRUE(m2.Matches('\1')); |
|
EXPECT_FALSE(m2.Matches('a')); |
|
} |
|
|
|
// Tests that TypedEq<T>(v) matches values of type T that's equal to v. |
|
TEST(TypedEqTest, ChecksEqualityForGivenType) { |
|
Matcher<char> m1 = TypedEq<char>('a'); |
|
EXPECT_TRUE(m1.Matches('a')); |
|
EXPECT_FALSE(m1.Matches('b')); |
|
|
|
Matcher<int> m2 = TypedEq<int>(6); |
|
EXPECT_TRUE(m2.Matches(6)); |
|
EXPECT_FALSE(m2.Matches(7)); |
|
} |
|
|
|
// Tests that TypedEq(v) describes itself properly. |
|
TEST(TypedEqTest, CanDescribeSelf) { |
|
EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2))); |
|
} |
|
|
|
// Tests that TypedEq<T>(v) has type Matcher<T>. |
|
|
|
// Type<T>::IsTypeOf(v) compiles if the type of value v is T, where T |
|
// is a "bare" type (i.e. not in the form of const U or U&). If v's |
|
// type is not T, the compiler will generate a message about |
|
// "undefined reference". |
|
template <typename T> |
|
struct Type { |
|
static bool IsTypeOf(const T& /* v */) { return true; } |
|
|
|
template <typename T2> |
|
static void IsTypeOf(T2 v); |
|
}; |
|
|
|
TEST(TypedEqTest, HasSpecifiedType) { |
|
// Verfies that the type of TypedEq<T>(v) is Matcher<T>. |
|
Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5)); |
|
Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5)); |
|
} |
|
|
|
// Tests that Ge(v) matches anything >= v. |
|
TEST(GeTest, ImplementsGreaterThanOrEqual) { |
|
Matcher<int> m1 = Ge(0); |
|
EXPECT_TRUE(m1.Matches(1)); |
|
EXPECT_TRUE(m1.Matches(0)); |
|
EXPECT_FALSE(m1.Matches(-1)); |
|
} |
|
|
|
// Tests that Ge(v) describes itself properly. |
|
TEST(GeTest, CanDescribeSelf) { |
|
Matcher<int> m = Ge(5); |
|
EXPECT_EQ("is >= 5", Describe(m)); |
|
} |
|
|
|
// Tests that Gt(v) matches anything > v. |
|
TEST(GtTest, ImplementsGreaterThan) { |
|
Matcher<double> m1 = Gt(0); |
|
EXPECT_TRUE(m1.Matches(1.0)); |
|
EXPECT_FALSE(m1.Matches(0.0)); |
|
EXPECT_FALSE(m1.Matches(-1.0)); |
|
} |
|
|
|
// Tests that Gt(v) describes itself properly. |
|
TEST(GtTest, CanDescribeSelf) { |
|
Matcher<int> m = Gt(5); |
|
EXPECT_EQ("is > 5", Describe(m)); |
|
} |
|
|
|
// Tests that Le(v) matches anything <= v. |
|
TEST(LeTest, ImplementsLessThanOrEqual) { |
|
Matcher<char> m1 = Le('b'); |
|
EXPECT_TRUE(m1.Matches('a')); |
|
EXPECT_TRUE(m1.Matches('b')); |
|
EXPECT_FALSE(m1.Matches('c')); |
|
} |
|
|
|
// Tests that Le(v) describes itself properly. |
|
TEST(LeTest, CanDescribeSelf) { |
|
Matcher<int> m = Le(5); |
|
EXPECT_EQ("is <= 5", Describe(m)); |
|
} |
|
|
|
// Tests that Lt(v) matches anything < v. |
|
TEST(LtTest, ImplementsLessThan) { |
|
Matcher<const std::string&> m1 = Lt("Hello"); |
|
EXPECT_TRUE(m1.Matches("Abc")); |
|
EXPECT_FALSE(m1.Matches("Hello")); |
|
EXPECT_FALSE(m1.Matches("Hello, world!")); |
|
} |
|
|
|
// Tests that Lt(v) describes itself properly. |
|
TEST(LtTest, CanDescribeSelf) { |
|
Matcher<int> m = Lt(5); |
|
EXPECT_EQ("is < 5", Describe(m)); |
|
} |
|
|
|
// Tests that Ne(v) matches anything != v. |
|
TEST(NeTest, ImplementsNotEqual) { |
|
Matcher<int> m1 = Ne(0); |
|
EXPECT_TRUE(m1.Matches(1)); |
|
EXPECT_TRUE(m1.Matches(-1)); |
|
EXPECT_FALSE(m1.Matches(0)); |
|
} |
|
|
|
// Tests that Ne(v) describes itself properly. |
|
TEST(NeTest, CanDescribeSelf) { |
|
Matcher<int> m = Ne(5); |
|
EXPECT_EQ("isn't equal to 5", Describe(m)); |
|
} |
|
|
|
class MoveOnly { |
|
public: |
|
explicit MoveOnly(int i) : i_(i) {} |
|
MoveOnly(const MoveOnly&) = delete; |
|
MoveOnly(MoveOnly&&) = default; |
|
MoveOnly& operator=(const MoveOnly&) = delete; |
|
MoveOnly& operator=(MoveOnly&&) = default; |
|
|
|
bool operator==(const MoveOnly& other) const { return i_ == other.i_; } |
|
bool operator!=(const MoveOnly& other) const { return i_ != other.i_; } |
|
bool operator<(const MoveOnly& other) const { return i_ < other.i_; } |
|
bool operator<=(const MoveOnly& other) const { return i_ <= other.i_; } |
|
bool operator>(const MoveOnly& other) const { return i_ > other.i_; } |
|
bool operator>=(const MoveOnly& other) const { return i_ >= other.i_; } |
|
|
|
private: |
|
int i_; |
|
}; |
|
|
|
struct MoveHelper { |
|
MOCK_METHOD1(Call, void(MoveOnly)); |
|
}; |
|
|
|
TEST(ComparisonBaseTest, WorksWithMoveOnly) { |
|
MoveOnly m{0}; |
|
MoveHelper helper; |
|
|
|
EXPECT_CALL(helper, Call(Eq(ByRef(m)))); |
|
helper.Call(MoveOnly(0)); |
|
EXPECT_CALL(helper, Call(Ne(ByRef(m)))); |
|
helper.Call(MoveOnly(1)); |
|
EXPECT_CALL(helper, Call(Le(ByRef(m)))); |
|
helper.Call(MoveOnly(0)); |
|
EXPECT_CALL(helper, Call(Lt(ByRef(m)))); |
|
helper.Call(MoveOnly(-1)); |
|
EXPECT_CALL(helper, Call(Ge(ByRef(m)))); |
|
helper.Call(MoveOnly(0)); |
|
EXPECT_CALL(helper, Call(Gt(ByRef(m)))); |
|
helper.Call(MoveOnly(1)); |
|
} |
|
|
|
// Tests that IsNull() matches any NULL pointer of any type. |
|
TEST(IsNullTest, MatchesNullPointer) { |
|
Matcher<int*> m1 = IsNull(); |
|
int* p1 = nullptr; |
|
int n = 0; |
|
EXPECT_TRUE(m1.Matches(p1)); |
|
EXPECT_FALSE(m1.Matches(&n)); |
|
|
|
Matcher<const char*> m2 = IsNull(); |
|
const char* p2 = nullptr; |
|
EXPECT_TRUE(m2.Matches(p2)); |
|
EXPECT_FALSE(m2.Matches("hi")); |
|
|
|
Matcher<void*> m3 = IsNull(); |
|
void* p3 = nullptr; |
|
EXPECT_TRUE(m3.Matches(p3)); |
|
EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef))); |
|
} |
|
|
|
TEST(IsNullTest, StdFunction) { |
|
const Matcher<std::function<void()>> m = IsNull(); |
|
|
|
EXPECT_TRUE(m.Matches(std::function<void()>())); |
|
EXPECT_FALSE(m.Matches([]{})); |
|
} |
|
|
|
// Tests that IsNull() describes itself properly. |
|
TEST(IsNullTest, CanDescribeSelf) { |
|
Matcher<int*> m = IsNull(); |
|
EXPECT_EQ("is NULL", Describe(m)); |
|
EXPECT_EQ("isn't NULL", DescribeNegation(m)); |
|
} |
|
|
|
// Tests that NotNull() matches any non-NULL pointer of any type. |
|
TEST(NotNullTest, MatchesNonNullPointer) { |
|
Matcher<int*> m1 = NotNull(); |
|
int* p1 = nullptr; |
|
int n = 0; |
|
EXPECT_FALSE(m1.Matches(p1)); |
|
EXPECT_TRUE(m1.Matches(&n)); |
|
|
|
Matcher<const char*> m2 = NotNull(); |
|
const char* p2 = nullptr; |
|
EXPECT_FALSE(m2.Matches(p2)); |
|
EXPECT_TRUE(m2.Matches("hi")); |
|
} |
|
|
|
TEST(NotNullTest, LinkedPtr) { |
|
const Matcher<std::shared_ptr<int>> m = NotNull(); |
|
const std::shared_ptr<int> null_p; |
|
const std::shared_ptr<int> non_null_p(new int); |
|
|
|
EXPECT_FALSE(m.Matches(null_p)); |
|
EXPECT_TRUE(m.Matches(non_null_p)); |
|
} |
|
|
|
TEST(NotNullTest, ReferenceToConstLinkedPtr) { |
|
const Matcher<const std::shared_ptr<double>&> m = NotNull(); |
|
const std::shared_ptr<double> null_p; |
|
const std::shared_ptr<double> non_null_p(new double); |
|
|
|
EXPECT_FALSE(m.Matches(null_p)); |
|
EXPECT_TRUE(m.Matches(non_null_p)); |
|
} |
|
|
|
TEST(NotNullTest, StdFunction) { |
|
const Matcher<std::function<void()>> m = NotNull(); |
|
|
|
EXPECT_TRUE(m.Matches([]{})); |
|
EXPECT_FALSE(m.Matches(std::function<void()>())); |
|
} |
|
|
|
// Tests that NotNull() describes itself properly. |
|
TEST(NotNullTest, CanDescribeSelf) { |
|
Matcher<int*> m = NotNull(); |
|
EXPECT_EQ("isn't NULL", Describe(m)); |
|
} |
|
|
|
// Tests that Ref(variable) matches an argument that references |
|
// 'variable'. |
|
TEST(RefTest, MatchesSameVariable) { |
|
int a = 0; |
|
int b = 0; |
|
Matcher<int&> m = Ref(a); |
|
EXPECT_TRUE(m.Matches(a)); |
|
EXPECT_FALSE(m.Matches(b)); |
|
} |
|
|
|
// Tests that Ref(variable) describes itself properly. |
|
TEST(RefTest, CanDescribeSelf) { |
|
int n = 5; |
|
Matcher<int&> m = Ref(n); |
|
stringstream ss; |
|
ss << "references the variable @" << &n << " 5"; |
|
EXPECT_EQ(ss.str(), Describe(m)); |
|
} |
|
|
|
// Test that Ref(non_const_varialbe) can be used as a matcher for a |
|
// const reference. |
|
TEST(RefTest, CanBeUsedAsMatcherForConstReference) { |
|
int a = 0; |
|
int b = 0; |
|
Matcher<const int&> m = Ref(a); |
|
EXPECT_TRUE(m.Matches(a)); |
|
EXPECT_FALSE(m.Matches(b)); |
|
} |
|
|
|
// Tests that Ref(variable) is covariant, i.e. Ref(derived) can be |
|
// used wherever Ref(base) can be used (Ref(derived) is a sub-type |
|
// of Ref(base), but not vice versa. |
|
|
|
TEST(RefTest, IsCovariant) { |
|
Base base, base2; |
|
Derived derived; |
|
Matcher<const Base&> m1 = Ref(base); |
|
EXPECT_TRUE(m1.Matches(base)); |
|
EXPECT_FALSE(m1.Matches(base2)); |
|
EXPECT_FALSE(m1.Matches(derived)); |
|
|
|
m1 = Ref(derived); |
|
EXPECT_TRUE(m1.Matches(derived)); |
|
EXPECT_FALSE(m1.Matches(base)); |
|
EXPECT_FALSE(m1.Matches(base2)); |
|
} |
|
|
|
TEST(RefTest, ExplainsResult) { |
|
int n = 0; |
|
EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n), |
|
StartsWith("which is located @")); |
|
|
|
int m = 0; |
|
EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m), |
|
StartsWith("which is located @")); |
|
} |
|
|
|
// Tests string comparison matchers. |
|
|
|
TEST(StrEqTest, MatchesEqualString) { |
|
Matcher<const char*> m = StrEq(std::string("Hello")); |
|
EXPECT_TRUE(m.Matches("Hello")); |
|
EXPECT_FALSE(m.Matches("hello")); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
|
|
Matcher<const std::string&> m2 = StrEq("Hello"); |
|
EXPECT_TRUE(m2.Matches("Hello")); |
|
EXPECT_FALSE(m2.Matches("Hi")); |
|
|
|
#if GTEST_HAS_ABSL |
|
Matcher<const absl::string_view&> m3 = StrEq("Hello"); |
|
EXPECT_TRUE(m3.Matches(absl::string_view("Hello"))); |
|
EXPECT_FALSE(m3.Matches(absl::string_view("hello"))); |
|
EXPECT_FALSE(m3.Matches(absl::string_view())); |
|
|
|
Matcher<const absl::string_view&> m_empty = StrEq(""); |
|
EXPECT_TRUE(m_empty.Matches(absl::string_view(""))); |
|
EXPECT_TRUE(m_empty.Matches(absl::string_view())); |
|
EXPECT_FALSE(m_empty.Matches(absl::string_view("hello"))); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
TEST(StrEqTest, CanDescribeSelf) { |
|
Matcher<std::string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3"); |
|
EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"", |
|
Describe(m)); |
|
|
|
std::string str("01204500800"); |
|
str[3] = '\0'; |
|
Matcher<std::string> m2 = StrEq(str); |
|
EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2)); |
|
str[0] = str[6] = str[7] = str[9] = str[10] = '\0'; |
|
Matcher<std::string> m3 = StrEq(str); |
|
EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3)); |
|
} |
|
|
|
TEST(StrNeTest, MatchesUnequalString) { |
|
Matcher<const char*> m = StrNe("Hello"); |
|
EXPECT_TRUE(m.Matches("")); |
|
EXPECT_TRUE(m.Matches(nullptr)); |
|
EXPECT_FALSE(m.Matches("Hello")); |
|
|
|
Matcher<std::string> m2 = StrNe(std::string("Hello")); |
|
EXPECT_TRUE(m2.Matches("hello")); |
|
EXPECT_FALSE(m2.Matches("Hello")); |
|
|
|
#if GTEST_HAS_ABSL |
|
Matcher<const absl::string_view> m3 = StrNe("Hello"); |
|
EXPECT_TRUE(m3.Matches(absl::string_view(""))); |
|
EXPECT_TRUE(m3.Matches(absl::string_view())); |
|
EXPECT_FALSE(m3.Matches(absl::string_view("Hello"))); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
TEST(StrNeTest, CanDescribeSelf) { |
|
Matcher<const char*> m = StrNe("Hi"); |
|
EXPECT_EQ("isn't equal to \"Hi\"", Describe(m)); |
|
} |
|
|
|
TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) { |
|
Matcher<const char*> m = StrCaseEq(std::string("Hello")); |
|
EXPECT_TRUE(m.Matches("Hello")); |
|
EXPECT_TRUE(m.Matches("hello")); |
|
EXPECT_FALSE(m.Matches("Hi")); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
|
|
Matcher<const std::string&> m2 = StrCaseEq("Hello"); |
|
EXPECT_TRUE(m2.Matches("hello")); |
|
EXPECT_FALSE(m2.Matches("Hi")); |
|
|
|
#if GTEST_HAS_ABSL |
|
Matcher<const absl::string_view&> m3 = StrCaseEq(std::string("Hello")); |
|
EXPECT_TRUE(m3.Matches(absl::string_view("Hello"))); |
|
EXPECT_TRUE(m3.Matches(absl::string_view("hello"))); |
|
EXPECT_FALSE(m3.Matches(absl::string_view("Hi"))); |
|
EXPECT_FALSE(m3.Matches(absl::string_view())); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { |
|
std::string str1("oabocdooeoo"); |
|
std::string str2("OABOCDOOEOO"); |
|
Matcher<const std::string&> m0 = StrCaseEq(str1); |
|
EXPECT_FALSE(m0.Matches(str2 + std::string(1, '\0'))); |
|
|
|
str1[3] = str2[3] = '\0'; |
|
Matcher<const std::string&> m1 = StrCaseEq(str1); |
|
EXPECT_TRUE(m1.Matches(str2)); |
|
|
|
str1[0] = str1[6] = str1[7] = str1[10] = '\0'; |
|
str2[0] = str2[6] = str2[7] = str2[10] = '\0'; |
|
Matcher<const std::string&> m2 = StrCaseEq(str1); |
|
str1[9] = str2[9] = '\0'; |
|
EXPECT_FALSE(m2.Matches(str2)); |
|
|
|
Matcher<const std::string&> m3 = StrCaseEq(str1); |
|
EXPECT_TRUE(m3.Matches(str2)); |
|
|
|
EXPECT_FALSE(m3.Matches(str2 + "x")); |
|
str2.append(1, '\0'); |
|
EXPECT_FALSE(m3.Matches(str2)); |
|
EXPECT_FALSE(m3.Matches(std::string(str2, 0, 9))); |
|
} |
|
|
|
TEST(StrCaseEqTest, CanDescribeSelf) { |
|
Matcher<std::string> m = StrCaseEq("Hi"); |
|
EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m)); |
|
} |
|
|
|
TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) { |
|
Matcher<const char*> m = StrCaseNe("Hello"); |
|
EXPECT_TRUE(m.Matches("Hi")); |
|
EXPECT_TRUE(m.Matches(nullptr)); |
|
EXPECT_FALSE(m.Matches("Hello")); |
|
EXPECT_FALSE(m.Matches("hello")); |
|
|
|
Matcher<std::string> m2 = StrCaseNe(std::string("Hello")); |
|
EXPECT_TRUE(m2.Matches("")); |
|
EXPECT_FALSE(m2.Matches("Hello")); |
|
|
|
#if GTEST_HAS_ABSL |
|
Matcher<const absl::string_view> m3 = StrCaseNe("Hello"); |
|
EXPECT_TRUE(m3.Matches(absl::string_view("Hi"))); |
|
EXPECT_TRUE(m3.Matches(absl::string_view())); |
|
EXPECT_FALSE(m3.Matches(absl::string_view("Hello"))); |
|
EXPECT_FALSE(m3.Matches(absl::string_view("hello"))); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
TEST(StrCaseNeTest, CanDescribeSelf) { |
|
Matcher<const char*> m = StrCaseNe("Hi"); |
|
EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m)); |
|
} |
|
|
|
// Tests that HasSubstr() works for matching string-typed values. |
|
TEST(HasSubstrTest, WorksForStringClasses) { |
|
const Matcher<std::string> m1 = HasSubstr("foo"); |
|
EXPECT_TRUE(m1.Matches(std::string("I love food."))); |
|
EXPECT_FALSE(m1.Matches(std::string("tofo"))); |
|
|
|
const Matcher<const std::string&> m2 = HasSubstr("foo"); |
|
EXPECT_TRUE(m2.Matches(std::string("I love food."))); |
|
EXPECT_FALSE(m2.Matches(std::string("tofo"))); |
|
|
|
const Matcher<std::string> m_empty = HasSubstr(""); |
|
EXPECT_TRUE(m_empty.Matches(std::string())); |
|
EXPECT_TRUE(m_empty.Matches(std::string("not empty"))); |
|
} |
|
|
|
// Tests that HasSubstr() works for matching C-string-typed values. |
|
TEST(HasSubstrTest, WorksForCStrings) { |
|
const Matcher<char*> m1 = HasSubstr("foo"); |
|
EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food."))); |
|
EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo"))); |
|
EXPECT_FALSE(m1.Matches(nullptr)); |
|
|
|
const Matcher<const char*> m2 = HasSubstr("foo"); |
|
EXPECT_TRUE(m2.Matches("I love food.")); |
|
EXPECT_FALSE(m2.Matches("tofo")); |
|
EXPECT_FALSE(m2.Matches(nullptr)); |
|
|
|
const Matcher<const char*> m_empty = HasSubstr(""); |
|
EXPECT_TRUE(m_empty.Matches("not empty")); |
|
EXPECT_TRUE(m_empty.Matches("")); |
|
EXPECT_FALSE(m_empty.Matches(nullptr)); |
|
} |
|
|
|
#if GTEST_HAS_ABSL |
|
// Tests that HasSubstr() works for matching absl::string_view-typed values. |
|
TEST(HasSubstrTest, WorksForStringViewClasses) { |
|
const Matcher<absl::string_view> m1 = HasSubstr("foo"); |
|
EXPECT_TRUE(m1.Matches(absl::string_view("I love food."))); |
|
EXPECT_FALSE(m1.Matches(absl::string_view("tofo"))); |
|
EXPECT_FALSE(m1.Matches(absl::string_view())); |
|
|
|
const Matcher<const absl::string_view&> m2 = HasSubstr("foo"); |
|
EXPECT_TRUE(m2.Matches(absl::string_view("I love food."))); |
|
EXPECT_FALSE(m2.Matches(absl::string_view("tofo"))); |
|
EXPECT_FALSE(m2.Matches(absl::string_view())); |
|
|
|
const Matcher<const absl::string_view&> m3 = HasSubstr(""); |
|
EXPECT_TRUE(m3.Matches(absl::string_view("foo"))); |
|
EXPECT_TRUE(m3.Matches(absl::string_view(""))); |
|
EXPECT_TRUE(m3.Matches(absl::string_view())); |
|
} |
|
#endif // GTEST_HAS_ABSL |
|
|
|
// Tests that HasSubstr(s) describes itself properly. |
|
TEST(HasSubstrTest, CanDescribeSelf) { |
|
Matcher<std::string> m = HasSubstr("foo\n\""); |
|
EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m)); |
|
} |
|
|
|
TEST(KeyTest, CanDescribeSelf) { |
|
Matcher<const pair<std::string, int>&> m = Key("foo"); |
|
EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m)); |
|
EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m)); |
|
} |
|
|
|
TEST(KeyTest, ExplainsResult) { |
|
Matcher<pair<int, bool> > m = Key(GreaterThan(10)); |
|
EXPECT_EQ("whose first field is a value which is 5 less than 10", |
|
Explain(m, make_pair(5, true))); |
|
EXPECT_EQ("whose first field is a value which is 5 more than 10", |
|
Explain(m, make_pair(15, true))); |
|
} |
|
|
|
TEST(KeyTest, MatchesCorrectly) { |
|
pair<int, std::string> p(25, "foo"); |
|
EXPECT_THAT(p, Key(25)); |
|
EXPECT_THAT(p, Not(Key(42))); |
|
EXPECT_THAT(p, Key(Ge(20))); |
|
EXPECT_THAT(p, Not(Key(Lt(25)))); |
|
} |
|
|
|
TEST(KeyTest, WorksWithMoveOnly) { |
|
pair<std::unique_ptr<int>, std::unique_ptr<int>> p; |
|
EXPECT_THAT(p, Key(Eq(nullptr))); |
|
} |
|
|
|
template <size_t I> |
|
struct Tag {}; |
|
|
|
struct PairWithGet { |
|
int member_1; |
|
std::string member_2; |
|
using first_type = int; |
|
using second_type = std::string; |
|
|
|
const int& GetImpl(Tag<0>) const { return member_1; } |
|
const std::string& GetImpl(Tag<1>) const { return member_2; } |
|
}; |
|
template <size_t I> |
|
auto get(const PairWithGet& value) -> decltype(value.GetImpl(Tag<I>())) { |
|
return value.GetImpl(Tag<I>()); |
|
} |
|
TEST(PairTest, MatchesPairWithGetCorrectly) { |
|
PairWithGet p{25, "foo"}; |
|
EXPECT_THAT(p, Key(25)); |
|
EXPECT_THAT(p, Not(Key(42))); |
|
EXPECT_THAT(p, Key(Ge(20))); |
|
EXPECT_THAT(p, Not(Key(Lt(25)))); |
|
|
|
std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; |
|
EXPECT_THAT(v, Contains(Key(29))); |
|
} |
|
|
|
TEST(KeyTest, SafelyCastsInnerMatcher) { |
|
Matcher<int> is_positive = Gt(0); |
|
Matcher<int> is_negative = Lt(0); |
|
pair<char, bool> p('a', true); |
|
EXPECT_THAT(p, Key(is_positive)); |
|
EXPECT_THAT(p, Not(Key(is_negative))); |
|
} |
|
|
|
TEST(KeyTest, InsideContainsUsingMap) { |
|
map<int, char> container; |
|
container.insert(make_pair(1, 'a')); |
|
container.insert(make_pair(2, 'b')); |
|
container.insert(make_pair(4, 'c')); |
|
EXPECT_THAT(container, Contains(Key(1))); |
|
EXPECT_THAT(container, Not(Contains(Key(3)))); |
|
} |
|
|
|
TEST(KeyTest, InsideContainsUsingMultimap) { |
|
multimap<int, char> container; |
|
container.insert(make_pair(1, 'a')); |
|
container.insert(make_pair(2, 'b')); |
|
container.insert(make_pair(4, 'c')); |
|
|
|
EXPECT_THAT(container, Not(Contains(Key(25)))); |
|
container.insert(make_pair(25, 'd')); |
|
EXPECT_THAT(container, Contains(Key(25))); |
|
container.insert(make_pair(25, 'e')); |
|
EXPECT_THAT(container, Contains(Key(25))); |
|
|
|
EXPECT_THAT(container, Contains(Key(1))); |
|
EXPECT_THAT(container, Not(Contains(Key(3)))); |
|
} |
|
|
|
TEST(PairTest, Typing) { |
|
// Test verifies the following type conversions can be compiled. |
|
Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42); |
|
Matcher<const pair<const char*, int> > m2 = Pair("foo", 42); |
|
Matcher<pair<const char*, int> > m3 = Pair("foo", 42); |
|
|
|
Matcher<pair<int, const std::string> > m4 = Pair(25, "42"); |
|
Matcher<pair<const std::string, int> > m5 = Pair("25", 42); |
|
} |
|
|
|
TEST(PairTest, CanDescribeSelf) { |
|
Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42); |
|
EXPECT_EQ("has a first field that is equal to \"foo\"" |
|
", and has a second field that is equal to 42", |
|
Describe(m1)); |
|
EXPECT_EQ("has a first field that isn't equal to \"foo\"" |
|
", or has a second field that isn't equal to 42", |
|
DescribeNegation(m1)); |
|
// Double and triple negation (1 or 2 times not and description of negation). |
|
Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42)); |
|
EXPECT_EQ("has a first field that isn't equal to 13" |
|
", and has a second field that is equal to 42", |
|
DescribeNegation(m2)); |
|
} |
|
|
|
TEST(PairTest, CanExplainMatchResultTo) { |
|
// If neither field matches, Pair() should explain about the first |
|
// field. |
|
const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0)); |
|
EXPECT_EQ("whose first field does not match, which is 1 less than 0", |
|
Explain(m, make_pair(-1, -2))); |
|
|
|
// If the first field matches but the second doesn't, Pair() should |
|
// explain about the second field. |
|
EXPECT_EQ("whose second field does not match, which is 2 less than 0", |
|
Explain(m, make_pair(1, -2))); |
|
|
|
// If the first field doesn't match but the second does, Pair() |
|
// should explain about the first field. |
|
EXPECT_EQ("whose first field does not match, which is 1 less than 0", |
|
Explain(m, make_pair(-1, 2))); |
|
|
|
// If both fields match, Pair() should explain about them both. |
|
EXPECT_EQ("whose both fields match, where the first field is a value " |
|
"which is 1 more than 0, and the second field is a value " |
|
"which is 2 more than 0", |
|
Explain(m, make_pair(1, 2))); |
|
|
|
// If only the first match has an explanation, only this explanation should |
|
// be printed. |
|
const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0); |
|
EXPECT_EQ("whose both fields match, where the first field is a value " |
|
"which is 1 more than 0", |
|
Explain(explain_first, make_pair(1, 0))); |
|
|
|
// If only the second match has an explanation, only this explanation should |
|
// be printed. |
|
const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0)); |
|
EXPECT_EQ("whose both fields match, where the second field is a value " |
|
"which is 1 more than 0", |
|
Explain(explain_second, make_pair(0, 1))); |
|
} |
|
|
|
TEST(PairTest, MatchesCorrectly) { |
|
pair<int, std::string> p(25, "foo"); |
|
|
|
// Both fields match. |
|
EXPECT_THAT(p, Pair(25, "foo")); |
|
EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o"))); |
|
|
|
// 'first' doesnt' match, but 'second' matches. |
|
EXPECT_THAT(p, Not(Pair(42, "foo"))); |
|
EXPECT_THAT(p, Not(Pair(Lt(25), "foo"))); |
|
|
|
// 'first' matches, but 'second' doesn't match. |
|
EXPECT_THAT(p, Not(Pair(25, "bar"))); |
|
EXPECT_THAT(p, Not(Pair(25, Not("foo")))); |
|
|
|
// Neither field matches. |
|
EXPECT_THAT(p, Not(Pair(13, "bar"))); |
|
EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a")))); |
|
} |
|
|
|
TEST(PairTest, WorksWithMoveOnly) { |
|
pair<std::unique_ptr<int>, std::unique_ptr<int>> p; |
|
p.second.reset(new int(7)); |
|
EXPECT_THAT(p, Pair(Eq(nullptr), Ne(nullptr))); |
|
} |
|
|
|
TEST(PairTest, SafelyCastsInnerMatchers) { |
|
Matcher<int> is_positive = Gt(0); |
|
Matcher<int> is_negative = Lt(0); |
|
pair<char, bool> p('a', true); |
|
EXPECT_THAT(p, Pair(is_positive, _)); |
|
EXPECT_THAT(p, Not(Pair(is_negative, _))); |
|
EXPECT_THAT(p, Pair(_, is_positive)); |
|
EXPECT_THAT(p, Not(Pair(_, is_negative))); |
|
} |
|
|
|
TEST(PairTest, InsideContainsUsingMap) { |
|
map<int, char> container; |
|
container.insert(make_pair(1, 'a')); |
|
container.insert(make_pair(2, 'b')); |
|
container.insert(make_pair(4, 'c')); |
|
EXPECT_THAT(container, Contains(Pair(1, 'a'))); |
|
EXPECT_THAT(container, Contains(Pair(1, _))); |
|
EXPECT_THAT(container, Contains(Pair(_, 'a'))); |
|
EXPECT_THAT(container, Not(Contains(Pair(3, _)))); |
|
} |
|
|
|
TEST(ContainsTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(Contains(Pointee(2)))); |
|
helper.Call(MakeUniquePtrs({1, 2})); |
|
} |
|
|
|
TEST(PairTest, UseGetInsteadOfMembers) { |
|
PairWithGet pair{7, "ABC"}; |
|
EXPECT_THAT(pair, Pair(7, "ABC")); |
|
EXPECT_THAT(pair, Pair(Ge(7), HasSubstr("AB"))); |
|
EXPECT_THAT(pair, Not(Pair(Lt(7), "ABC"))); |
|
|
|
std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; |
|
EXPECT_THAT(v, |
|
ElementsAre(Pair(11, std::string("Foo")), Pair(Ge(10), Not("")))); |
|
} |
|
|
|
// Tests StartsWith(s). |
|
|
|
TEST(StartsWithTest, MatchesStringWithGivenPrefix) { |
|
const Matcher<const char*> m1 = StartsWith(std::string("")); |
|
EXPECT_TRUE(m1.Matches("Hi")); |
|
EXPECT_TRUE(m1.Matches("")); |
|
EXPECT_FALSE(m1.Matches(nullptr)); |
|
|
|
const Matcher<const std::string&> m2 = StartsWith("Hi"); |
|
EXPECT_TRUE(m2.Matches("Hi")); |
|
EXPECT_TRUE(m2.Matches("Hi Hi!")); |
|
EXPECT_TRUE(m2.Matches("High")); |
|
EXPECT_FALSE(m2.Matches("H")); |
|
EXPECT_FALSE(m2.Matches(" Hi")); |
|
|
|
#if GTEST_HAS_ABSL |
|
const Matcher<absl::string_view> m_empty = StartsWith(""); |
|
EXPECT_TRUE(m_empty.Matches(absl::string_view())); |
|
EXPECT_TRUE(m_empty.Matches(absl::string_view(""))); |
|
EXPECT_TRUE(m_empty.Matches(absl::string_view("not empty"))); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
TEST(StartsWithTest, CanDescribeSelf) { |
|
Matcher<const std::string> m = StartsWith("Hi"); |
|
EXPECT_EQ("starts with \"Hi\"", Describe(m)); |
|
} |
|
|
|
// Tests EndsWith(s). |
|
|
|
TEST(EndsWithTest, MatchesStringWithGivenSuffix) { |
|
const Matcher<const char*> m1 = EndsWith(""); |
|
EXPECT_TRUE(m1.Matches("Hi")); |
|
EXPECT_TRUE(m1.Matches("")); |
|
EXPECT_FALSE(m1.Matches(nullptr)); |
|
|
|
const Matcher<const std::string&> m2 = EndsWith(std::string("Hi")); |
|
EXPECT_TRUE(m2.Matches("Hi")); |
|
EXPECT_TRUE(m2.Matches("Wow Hi Hi")); |
|
EXPECT_TRUE(m2.Matches("Super Hi")); |
|
EXPECT_FALSE(m2.Matches("i")); |
|
EXPECT_FALSE(m2.Matches("Hi ")); |
|
|
|
#if GTEST_HAS_ABSL |
|
const Matcher<const absl::string_view&> m4 = EndsWith(""); |
|
EXPECT_TRUE(m4.Matches("Hi")); |
|
EXPECT_TRUE(m4.Matches("")); |
|
EXPECT_TRUE(m4.Matches(absl::string_view())); |
|
EXPECT_TRUE(m4.Matches(absl::string_view(""))); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
TEST(EndsWithTest, CanDescribeSelf) { |
|
Matcher<const std::string> m = EndsWith("Hi"); |
|
EXPECT_EQ("ends with \"Hi\"", Describe(m)); |
|
} |
|
|
|
// Tests MatchesRegex(). |
|
|
|
TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) { |
|
const Matcher<const char*> m1 = MatchesRegex("a.*z"); |
|
EXPECT_TRUE(m1.Matches("az")); |
|
EXPECT_TRUE(m1.Matches("abcz")); |
|
EXPECT_FALSE(m1.Matches(nullptr)); |
|
|
|
const Matcher<const std::string&> m2 = MatchesRegex(new RE("a.*z")); |
|
EXPECT_TRUE(m2.Matches("azbz")); |
|
EXPECT_FALSE(m2.Matches("az1")); |
|
EXPECT_FALSE(m2.Matches("1az")); |
|
|
|
#if GTEST_HAS_ABSL |
|
const Matcher<const absl::string_view&> m3 = MatchesRegex("a.*z"); |
|
EXPECT_TRUE(m3.Matches(absl::string_view("az"))); |
|
EXPECT_TRUE(m3.Matches(absl::string_view("abcz"))); |
|
EXPECT_FALSE(m3.Matches(absl::string_view("1az"))); |
|
EXPECT_FALSE(m3.Matches(absl::string_view())); |
|
const Matcher<const absl::string_view&> m4 = MatchesRegex(""); |
|
EXPECT_TRUE(m4.Matches(absl::string_view(""))); |
|
EXPECT_TRUE(m4.Matches(absl::string_view())); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
TEST(MatchesRegexTest, CanDescribeSelf) { |
|
Matcher<const std::string> m1 = MatchesRegex(std::string("Hi.*")); |
|
EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1)); |
|
|
|
Matcher<const char*> m2 = MatchesRegex(new RE("a.*")); |
|
EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2)); |
|
|
|
#if GTEST_HAS_ABSL |
|
Matcher<const absl::string_view> m3 = MatchesRegex(new RE("0.*")); |
|
EXPECT_EQ("matches regular expression \"0.*\"", Describe(m3)); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
// Tests ContainsRegex(). |
|
|
|
TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) { |
|
const Matcher<const char*> m1 = ContainsRegex(std::string("a.*z")); |
|
EXPECT_TRUE(m1.Matches("az")); |
|
EXPECT_TRUE(m1.Matches("0abcz1")); |
|
EXPECT_FALSE(m1.Matches(nullptr)); |
|
|
|
const Matcher<const std::string&> m2 = ContainsRegex(new RE("a.*z")); |
|
EXPECT_TRUE(m2.Matches("azbz")); |
|
EXPECT_TRUE(m2.Matches("az1")); |
|
EXPECT_FALSE(m2.Matches("1a")); |
|
|
|
#if GTEST_HAS_ABSL |
|
const Matcher<const absl::string_view&> m3 = ContainsRegex(new RE("a.*z")); |
|
EXPECT_TRUE(m3.Matches(absl::string_view("azbz"))); |
|
EXPECT_TRUE(m3.Matches(absl::string_view("az1"))); |
|
EXPECT_FALSE(m3.Matches(absl::string_view("1a"))); |
|
EXPECT_FALSE(m3.Matches(absl::string_view())); |
|
const Matcher<const absl::string_view&> m4 = ContainsRegex(""); |
|
EXPECT_TRUE(m4.Matches(absl::string_view(""))); |
|
EXPECT_TRUE(m4.Matches(absl::string_view())); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
TEST(ContainsRegexTest, CanDescribeSelf) { |
|
Matcher<const std::string> m1 = ContainsRegex("Hi.*"); |
|
EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1)); |
|
|
|
Matcher<const char*> m2 = ContainsRegex(new RE("a.*")); |
|
EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2)); |
|
|
|
#if GTEST_HAS_ABSL |
|
Matcher<const absl::string_view> m3 = ContainsRegex(new RE("0.*")); |
|
EXPECT_EQ("contains regular expression \"0.*\"", Describe(m3)); |
|
#endif // GTEST_HAS_ABSL |
|
} |
|
|
|
// Tests for wide strings. |
|
#if GTEST_HAS_STD_WSTRING |
|
TEST(StdWideStrEqTest, MatchesEqual) { |
|
Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello")); |
|
EXPECT_TRUE(m.Matches(L"Hello")); |
|
EXPECT_FALSE(m.Matches(L"hello")); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
|
|
Matcher<const ::std::wstring&> m2 = StrEq(L"Hello"); |
|
EXPECT_TRUE(m2.Matches(L"Hello")); |
|
EXPECT_FALSE(m2.Matches(L"Hi")); |
|
|
|
Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); |
|
EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); |
|
EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E")); |
|
|
|
::std::wstring str(L"01204500800"); |
|
str[3] = L'\0'; |
|
Matcher<const ::std::wstring&> m4 = StrEq(str); |
|
EXPECT_TRUE(m4.Matches(str)); |
|
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; |
|
Matcher<const ::std::wstring&> m5 = StrEq(str); |
|
EXPECT_TRUE(m5.Matches(str)); |
|
} |
|
|
|
TEST(StdWideStrEqTest, CanDescribeSelf) { |
|
Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v"); |
|
EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"", |
|
Describe(m)); |
|
|
|
Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); |
|
EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", |
|
Describe(m2)); |
|
|
|
::std::wstring str(L"01204500800"); |
|
str[3] = L'\0'; |
|
Matcher<const ::std::wstring&> m4 = StrEq(str); |
|
EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); |
|
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; |
|
Matcher<const ::std::wstring&> m5 = StrEq(str); |
|
EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); |
|
} |
|
|
|
TEST(StdWideStrNeTest, MatchesUnequalString) { |
|
Matcher<const wchar_t*> m = StrNe(L"Hello"); |
|
EXPECT_TRUE(m.Matches(L"")); |
|
EXPECT_TRUE(m.Matches(nullptr)); |
|
EXPECT_FALSE(m.Matches(L"Hello")); |
|
|
|
Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello")); |
|
EXPECT_TRUE(m2.Matches(L"hello")); |
|
EXPECT_FALSE(m2.Matches(L"Hello")); |
|
} |
|
|
|
TEST(StdWideStrNeTest, CanDescribeSelf) { |
|
Matcher<const wchar_t*> m = StrNe(L"Hi"); |
|
EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); |
|
} |
|
|
|
TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { |
|
Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello")); |
|
EXPECT_TRUE(m.Matches(L"Hello")); |
|
EXPECT_TRUE(m.Matches(L"hello")); |
|
EXPECT_FALSE(m.Matches(L"Hi")); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
|
|
Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello"); |
|
EXPECT_TRUE(m2.Matches(L"hello")); |
|
EXPECT_FALSE(m2.Matches(L"Hi")); |
|
} |
|
|
|
TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { |
|
::std::wstring str1(L"oabocdooeoo"); |
|
::std::wstring str2(L"OABOCDOOEOO"); |
|
Matcher<const ::std::wstring&> m0 = StrCaseEq(str1); |
|
EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0'))); |
|
|
|
str1[3] = str2[3] = L'\0'; |
|
Matcher<const ::std::wstring&> m1 = StrCaseEq(str1); |
|
EXPECT_TRUE(m1.Matches(str2)); |
|
|
|
str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; |
|
str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; |
|
Matcher<const ::std::wstring&> m2 = StrCaseEq(str1); |
|
str1[9] = str2[9] = L'\0'; |
|
EXPECT_FALSE(m2.Matches(str2)); |
|
|
|
Matcher<const ::std::wstring&> m3 = StrCaseEq(str1); |
|
EXPECT_TRUE(m3.Matches(str2)); |
|
|
|
EXPECT_FALSE(m3.Matches(str2 + L"x")); |
|
str2.append(1, L'\0'); |
|
EXPECT_FALSE(m3.Matches(str2)); |
|
EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9))); |
|
} |
|
|
|
TEST(StdWideStrCaseEqTest, CanDescribeSelf) { |
|
Matcher< ::std::wstring> m = StrCaseEq(L"Hi"); |
|
EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); |
|
} |
|
|
|
TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { |
|
Matcher<const wchar_t*> m = StrCaseNe(L"Hello"); |
|
EXPECT_TRUE(m.Matches(L"Hi")); |
|
EXPECT_TRUE(m.Matches(nullptr)); |
|
EXPECT_FALSE(m.Matches(L"Hello")); |
|
EXPECT_FALSE(m.Matches(L"hello")); |
|
|
|
Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello")); |
|
EXPECT_TRUE(m2.Matches(L"")); |
|
EXPECT_FALSE(m2.Matches(L"Hello")); |
|
} |
|
|
|
TEST(StdWideStrCaseNeTest, CanDescribeSelf) { |
|
Matcher<const wchar_t*> m = StrCaseNe(L"Hi"); |
|
EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); |
|
} |
|
|
|
// Tests that HasSubstr() works for matching wstring-typed values. |
|
TEST(StdWideHasSubstrTest, WorksForStringClasses) { |
|
const Matcher< ::std::wstring> m1 = HasSubstr(L"foo"); |
|
EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food."))); |
|
EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo"))); |
|
|
|
const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo"); |
|
EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food."))); |
|
EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo"))); |
|
} |
|
|
|
// Tests that HasSubstr() works for matching C-wide-string-typed values. |
|
TEST(StdWideHasSubstrTest, WorksForCStrings) { |
|
const Matcher<wchar_t*> m1 = HasSubstr(L"foo"); |
|
EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food."))); |
|
EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo"))); |
|
EXPECT_FALSE(m1.Matches(nullptr)); |
|
|
|
const Matcher<const wchar_t*> m2 = HasSubstr(L"foo"); |
|
EXPECT_TRUE(m2.Matches(L"I love food.")); |
|
EXPECT_FALSE(m2.Matches(L"tofo")); |
|
EXPECT_FALSE(m2.Matches(nullptr)); |
|
} |
|
|
|
// Tests that HasSubstr(s) describes itself properly. |
|
TEST(StdWideHasSubstrTest, CanDescribeSelf) { |
|
Matcher< ::std::wstring> m = HasSubstr(L"foo\n\""); |
|
EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); |
|
} |
|
|
|
// Tests StartsWith(s). |
|
|
|
TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) { |
|
const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L"")); |
|
EXPECT_TRUE(m1.Matches(L"Hi")); |
|
EXPECT_TRUE(m1.Matches(L"")); |
|
EXPECT_FALSE(m1.Matches(nullptr)); |
|
|
|
const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi"); |
|
EXPECT_TRUE(m2.Matches(L"Hi")); |
|
EXPECT_TRUE(m2.Matches(L"Hi Hi!")); |
|
EXPECT_TRUE(m2.Matches(L"High")); |
|
EXPECT_FALSE(m2.Matches(L"H")); |
|
EXPECT_FALSE(m2.Matches(L" Hi")); |
|
} |
|
|
|
TEST(StdWideStartsWithTest, CanDescribeSelf) { |
|
Matcher<const ::std::wstring> m = StartsWith(L"Hi"); |
|
EXPECT_EQ("starts with L\"Hi\"", Describe(m)); |
|
} |
|
|
|
// Tests EndsWith(s). |
|
|
|
TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) { |
|
const Matcher<const wchar_t*> m1 = EndsWith(L""); |
|
EXPECT_TRUE(m1.Matches(L"Hi")); |
|
EXPECT_TRUE(m1.Matches(L"")); |
|
EXPECT_FALSE(m1.Matches(nullptr)); |
|
|
|
const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi")); |
|
EXPECT_TRUE(m2.Matches(L"Hi")); |
|
EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); |
|
EXPECT_TRUE(m2.Matches(L"Super Hi")); |
|
EXPECT_FALSE(m2.Matches(L"i")); |
|
EXPECT_FALSE(m2.Matches(L"Hi ")); |
|
} |
|
|
|
TEST(StdWideEndsWithTest, CanDescribeSelf) { |
|
Matcher<const ::std::wstring> m = EndsWith(L"Hi"); |
|
EXPECT_EQ("ends with L\"Hi\"", Describe(m)); |
|
} |
|
|
|
#endif // GTEST_HAS_STD_WSTRING |
|
|
|
typedef ::std::tuple<long, int> Tuple2; // NOLINT |
|
|
|
// Tests that Eq() matches a 2-tuple where the first field == the |
|
// second field. |
|
TEST(Eq2Test, MatchesEqualArguments) { |
|
Matcher<const Tuple2&> m = Eq(); |
|
EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); |
|
EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); |
|
} |
|
|
|
// Tests that Eq() describes itself properly. |
|
TEST(Eq2Test, CanDescribeSelf) { |
|
Matcher<const Tuple2&> m = Eq(); |
|
EXPECT_EQ("are an equal pair", Describe(m)); |
|
} |
|
|
|
// Tests that Ge() matches a 2-tuple where the first field >= the |
|
// second field. |
|
TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) { |
|
Matcher<const Tuple2&> m = Ge(); |
|
EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); |
|
EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); |
|
EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); |
|
} |
|
|
|
// Tests that Ge() describes itself properly. |
|
TEST(Ge2Test, CanDescribeSelf) { |
|
Matcher<const Tuple2&> m = Ge(); |
|
EXPECT_EQ("are a pair where the first >= the second", Describe(m)); |
|
} |
|
|
|
// Tests that Gt() matches a 2-tuple where the first field > the |
|
// second field. |
|
TEST(Gt2Test, MatchesGreaterThanArguments) { |
|
Matcher<const Tuple2&> m = Gt(); |
|
EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); |
|
EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); |
|
EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); |
|
} |
|
|
|
// Tests that Gt() describes itself properly. |
|
TEST(Gt2Test, CanDescribeSelf) { |
|
Matcher<const Tuple2&> m = Gt(); |
|
EXPECT_EQ("are a pair where the first > the second", Describe(m)); |
|
} |
|
|
|
// Tests that Le() matches a 2-tuple where the first field <= the |
|
// second field. |
|
TEST(Le2Test, MatchesLessThanOrEqualArguments) { |
|
Matcher<const Tuple2&> m = Le(); |
|
EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); |
|
EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); |
|
EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); |
|
} |
|
|
|
// Tests that Le() describes itself properly. |
|
TEST(Le2Test, CanDescribeSelf) { |
|
Matcher<const Tuple2&> m = Le(); |
|
EXPECT_EQ("are a pair where the first <= the second", Describe(m)); |
|
} |
|
|
|
// Tests that Lt() matches a 2-tuple where the first field < the |
|
// second field. |
|
TEST(Lt2Test, MatchesLessThanArguments) { |
|
Matcher<const Tuple2&> m = Lt(); |
|
EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); |
|
EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); |
|
EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); |
|
} |
|
|
|
// Tests that Lt() describes itself properly. |
|
TEST(Lt2Test, CanDescribeSelf) { |
|
Matcher<const Tuple2&> m = Lt(); |
|
EXPECT_EQ("are a pair where the first < the second", Describe(m)); |
|
} |
|
|
|
// Tests that Ne() matches a 2-tuple where the first field != the |
|
// second field. |
|
TEST(Ne2Test, MatchesUnequalArguments) { |
|
Matcher<const Tuple2&> m = Ne(); |
|
EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); |
|
EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); |
|
EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); |
|
} |
|
|
|
// Tests that Ne() describes itself properly. |
|
TEST(Ne2Test, CanDescribeSelf) { |
|
Matcher<const Tuple2&> m = Ne(); |
|
EXPECT_EQ("are an unequal pair", Describe(m)); |
|
} |
|
|
|
TEST(PairMatchBaseTest, WorksWithMoveOnly) { |
|
using Pointers = std::tuple<std::unique_ptr<int>, std::unique_ptr<int>>; |
|
Matcher<Pointers> matcher = Eq(); |
|
Pointers pointers; |
|
// Tested values don't matter; the point is that matcher does not copy the |
|
// matched values. |
|
EXPECT_TRUE(matcher.Matches(pointers)); |
|
} |
|
|
|
// Tests that FloatEq() matches a 2-tuple where |
|
// FloatEq(first field) matches the second field. |
|
TEST(FloatEq2Test, MatchesEqualArguments) { |
|
typedef ::std::tuple<float, float> Tpl; |
|
Matcher<const Tpl&> m = FloatEq(); |
|
EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
|
EXPECT_TRUE(m.Matches(Tpl(0.3f, 0.1f + 0.1f + 0.1f))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); |
|
} |
|
|
|
// Tests that FloatEq() describes itself properly. |
|
TEST(FloatEq2Test, CanDescribeSelf) { |
|
Matcher<const ::std::tuple<float, float>&> m = FloatEq(); |
|
EXPECT_EQ("are an almost-equal pair", Describe(m)); |
|
} |
|
|
|
// Tests that NanSensitiveFloatEq() matches a 2-tuple where |
|
// NanSensitiveFloatEq(first field) matches the second field. |
|
TEST(NanSensitiveFloatEqTest, MatchesEqualArgumentsWithNaN) { |
|
typedef ::std::tuple<float, float> Tpl; |
|
Matcher<const Tpl&> m = NanSensitiveFloatEq(); |
|
EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
|
EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), |
|
std::numeric_limits<float>::quiet_NaN()))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN()))); |
|
EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f))); |
|
} |
|
|
|
// Tests that NanSensitiveFloatEq() describes itself properly. |
|
TEST(NanSensitiveFloatEqTest, CanDescribeSelfWithNaNs) { |
|
Matcher<const ::std::tuple<float, float>&> m = NanSensitiveFloatEq(); |
|
EXPECT_EQ("are an almost-equal pair", Describe(m)); |
|
} |
|
|
|
// Tests that DoubleEq() matches a 2-tuple where |
|
// DoubleEq(first field) matches the second field. |
|
TEST(DoubleEq2Test, MatchesEqualArguments) { |
|
typedef ::std::tuple<double, double> Tpl; |
|
Matcher<const Tpl&> m = DoubleEq(); |
|
EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); |
|
EXPECT_TRUE(m.Matches(Tpl(0.3, 0.1 + 0.1 + 0.1))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.1, 1.0))); |
|
} |
|
|
|
// Tests that DoubleEq() describes itself properly. |
|
TEST(DoubleEq2Test, CanDescribeSelf) { |
|
Matcher<const ::std::tuple<double, double>&> m = DoubleEq(); |
|
EXPECT_EQ("are an almost-equal pair", Describe(m)); |
|
} |
|
|
|
// Tests that NanSensitiveDoubleEq() matches a 2-tuple where |
|
// NanSensitiveDoubleEq(first field) matches the second field. |
|
TEST(NanSensitiveDoubleEqTest, MatchesEqualArgumentsWithNaN) { |
|
typedef ::std::tuple<double, double> Tpl; |
|
Matcher<const Tpl&> m = NanSensitiveDoubleEq(); |
|
EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
|
EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), |
|
std::numeric_limits<double>::quiet_NaN()))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN()))); |
|
EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f))); |
|
} |
|
|
|
// Tests that DoubleEq() describes itself properly. |
|
TEST(NanSensitiveDoubleEqTest, CanDescribeSelfWithNaNs) { |
|
Matcher<const ::std::tuple<double, double>&> m = NanSensitiveDoubleEq(); |
|
EXPECT_EQ("are an almost-equal pair", Describe(m)); |
|
} |
|
|
|
// Tests that FloatEq() matches a 2-tuple where |
|
// FloatNear(first field, max_abs_error) matches the second field. |
|
TEST(FloatNear2Test, MatchesEqualArguments) { |
|
typedef ::std::tuple<float, float> Tpl; |
|
Matcher<const Tpl&> m = FloatNear(0.5f); |
|
EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
|
EXPECT_TRUE(m.Matches(Tpl(1.3f, 1.0f))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.8f, 1.0f))); |
|
} |
|
|
|
// Tests that FloatNear() describes itself properly. |
|
TEST(FloatNear2Test, CanDescribeSelf) { |
|
Matcher<const ::std::tuple<float, float>&> m = FloatNear(0.5f); |
|
EXPECT_EQ("are an almost-equal pair", Describe(m)); |
|
} |
|
|
|
// Tests that NanSensitiveFloatNear() matches a 2-tuple where |
|
// NanSensitiveFloatNear(first field) matches the second field. |
|
TEST(NanSensitiveFloatNearTest, MatchesNearbyArgumentsWithNaN) { |
|
typedef ::std::tuple<float, float> Tpl; |
|
Matcher<const Tpl&> m = NanSensitiveFloatNear(0.5f); |
|
EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
|
EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); |
|
EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), |
|
std::numeric_limits<float>::quiet_NaN()))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN()))); |
|
EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f))); |
|
} |
|
|
|
// Tests that NanSensitiveFloatNear() describes itself properly. |
|
TEST(NanSensitiveFloatNearTest, CanDescribeSelfWithNaNs) { |
|
Matcher<const ::std::tuple<float, float>&> m = NanSensitiveFloatNear(0.5f); |
|
EXPECT_EQ("are an almost-equal pair", Describe(m)); |
|
} |
|
|
|
// Tests that FloatEq() matches a 2-tuple where |
|
// DoubleNear(first field, max_abs_error) matches the second field. |
|
TEST(DoubleNear2Test, MatchesEqualArguments) { |
|
typedef ::std::tuple<double, double> Tpl; |
|
Matcher<const Tpl&> m = DoubleNear(0.5); |
|
EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); |
|
EXPECT_TRUE(m.Matches(Tpl(1.3, 1.0))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.8, 1.0))); |
|
} |
|
|
|
// Tests that DoubleNear() describes itself properly. |
|
TEST(DoubleNear2Test, CanDescribeSelf) { |
|
Matcher<const ::std::tuple<double, double>&> m = DoubleNear(0.5); |
|
EXPECT_EQ("are an almost-equal pair", Describe(m)); |
|
} |
|
|
|
// Tests that NanSensitiveDoubleNear() matches a 2-tuple where |
|
// NanSensitiveDoubleNear(first field) matches the second field. |
|
TEST(NanSensitiveDoubleNearTest, MatchesNearbyArgumentsWithNaN) { |
|
typedef ::std::tuple<double, double> Tpl; |
|
Matcher<const Tpl&> m = NanSensitiveDoubleNear(0.5f); |
|
EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); |
|
EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); |
|
EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), |
|
std::numeric_limits<double>::quiet_NaN()))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); |
|
EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN()))); |
|
EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f))); |
|
} |
|
|
|
// Tests that NanSensitiveDoubleNear() describes itself properly. |
|
TEST(NanSensitiveDoubleNearTest, CanDescribeSelfWithNaNs) { |
|
Matcher<const ::std::tuple<double, double>&> m = NanSensitiveDoubleNear(0.5f); |
|
EXPECT_EQ("are an almost-equal pair", Describe(m)); |
|
} |
|
|
|
// Tests that Not(m) matches any value that doesn't match m. |
|
TEST(NotTest, NegatesMatcher) { |
|
Matcher<int> m; |
|
m = Not(Eq(2)); |
|
EXPECT_TRUE(m.Matches(3)); |
|
EXPECT_FALSE(m.Matches(2)); |
|
} |
|
|
|
// Tests that Not(m) describes itself properly. |
|
TEST(NotTest, CanDescribeSelf) { |
|
Matcher<int> m = Not(Eq(5)); |
|
EXPECT_EQ("isn't equal to 5", Describe(m)); |
|
} |
|
|
|
// Tests that monomorphic matchers are safely cast by the Not matcher. |
|
TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) { |
|
// greater_than_5 is a monomorphic matcher. |
|
Matcher<int> greater_than_5 = Gt(5); |
|
|
|
Matcher<const int&> m = Not(greater_than_5); |
|
Matcher<int&> m2 = Not(greater_than_5); |
|
Matcher<int&> m3 = Not(m); |
|
} |
|
|
|
// Helper to allow easy testing of AllOf matchers with num parameters. |
|
void AllOfMatches(int num, const Matcher<int>& m) { |
|
SCOPED_TRACE(Describe(m)); |
|
EXPECT_TRUE(m.Matches(0)); |
|
for (int i = 1; i <= num; ++i) { |
|
EXPECT_FALSE(m.Matches(i)); |
|
} |
|
EXPECT_TRUE(m.Matches(num + 1)); |
|
} |
|
|
|
// Tests that AllOf(m1, ..., mn) matches any value that matches all of |
|
// the given matchers. |
|
TEST(AllOfTest, MatchesWhenAllMatch) { |
|
Matcher<int> m; |
|
m = AllOf(Le(2), Ge(1)); |
|
EXPECT_TRUE(m.Matches(1)); |
|
EXPECT_TRUE(m.Matches(2)); |
|
EXPECT_FALSE(m.Matches(0)); |
|
EXPECT_FALSE(m.Matches(3)); |
|
|
|
m = AllOf(Gt(0), Ne(1), Ne(2)); |
|
EXPECT_TRUE(m.Matches(3)); |
|
EXPECT_FALSE(m.Matches(2)); |
|
EXPECT_FALSE(m.Matches(1)); |
|
EXPECT_FALSE(m.Matches(0)); |
|
|
|
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); |
|
EXPECT_TRUE(m.Matches(4)); |
|
EXPECT_FALSE(m.Matches(3)); |
|
EXPECT_FALSE(m.Matches(2)); |
|
EXPECT_FALSE(m.Matches(1)); |
|
EXPECT_FALSE(m.Matches(0)); |
|
|
|
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); |
|
EXPECT_TRUE(m.Matches(0)); |
|
EXPECT_TRUE(m.Matches(1)); |
|
EXPECT_FALSE(m.Matches(3)); |
|
|
|
// The following tests for varying number of sub-matchers. Due to the way |
|
// the sub-matchers are handled it is enough to test every sub-matcher once |
|
// with sub-matchers using the same matcher type. Varying matcher types are |
|
// checked for above. |
|
AllOfMatches(2, AllOf(Ne(1), Ne(2))); |
|
AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3))); |
|
AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4))); |
|
AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5))); |
|
AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6))); |
|
AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7))); |
|
AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), |
|
Ne(8))); |
|
AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), |
|
Ne(8), Ne(9))); |
|
AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), |
|
Ne(9), Ne(10))); |
|
AllOfMatches( |
|
50, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), |
|
Ne(10), Ne(11), Ne(12), Ne(13), Ne(14), Ne(15), Ne(16), Ne(17), |
|
Ne(18), Ne(19), Ne(20), Ne(21), Ne(22), Ne(23), Ne(24), Ne(25), |
|
Ne(26), Ne(27), Ne(28), Ne(29), Ne(30), Ne(31), Ne(32), Ne(33), |
|
Ne(34), Ne(35), Ne(36), Ne(37), Ne(38), Ne(39), Ne(40), Ne(41), |
|
Ne(42), Ne(43), Ne(44), Ne(45), Ne(46), Ne(47), Ne(48), Ne(49), |
|
Ne(50))); |
|
} |
|
|
|
|
|
// Tests that AllOf(m1, ..., mn) describes itself properly. |
|
TEST(AllOfTest, CanDescribeSelf) { |
|
Matcher<int> m; |
|
m = AllOf(Le(2), Ge(1)); |
|
EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m)); |
|
|
|
m = AllOf(Gt(0), Ne(1), Ne(2)); |
|
std::string expected_descr1 = |
|
"(is > 0) and (isn't equal to 1) and (isn't equal to 2)"; |
|
EXPECT_EQ(expected_descr1, Describe(m)); |
|
|
|
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); |
|
std::string expected_descr2 = |
|
"(is > 0) and (isn't equal to 1) and (isn't equal to 2) and (isn't equal " |
|
"to 3)"; |
|
EXPECT_EQ(expected_descr2, Describe(m)); |
|
|
|
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); |
|
std::string expected_descr3 = |
|
"(is >= 0) and (is < 10) and (isn't equal to 3) and (isn't equal to 5) " |
|
"and (isn't equal to 7)"; |
|
EXPECT_EQ(expected_descr3, Describe(m)); |
|
} |
|
|
|
// Tests that AllOf(m1, ..., mn) describes its negation properly. |
|
TEST(AllOfTest, CanDescribeNegation) { |
|
Matcher<int> m; |
|
m = AllOf(Le(2), Ge(1)); |
|
std::string expected_descr4 = "(isn't <= 2) or (isn't >= 1)"; |
|
EXPECT_EQ(expected_descr4, DescribeNegation(m)); |
|
|
|
m = AllOf(Gt(0), Ne(1), Ne(2)); |
|
std::string expected_descr5 = |
|
"(isn't > 0) or (is equal to 1) or (is equal to 2)"; |
|
EXPECT_EQ(expected_descr5, DescribeNegation(m)); |
|
|
|
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); |
|
std::string expected_descr6 = |
|
"(isn't > 0) or (is equal to 1) or (is equal to 2) or (is equal to 3)"; |
|
EXPECT_EQ(expected_descr6, DescribeNegation(m)); |
|
|
|
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); |
|
std::string expected_desr7 = |
|
"(isn't >= 0) or (isn't < 10) or (is equal to 3) or (is equal to 5) or " |
|
"(is equal to 7)"; |
|
EXPECT_EQ(expected_desr7, DescribeNegation(m)); |
|
|
|
m = AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), |
|
Ne(10), Ne(11)); |
|
AllOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
|
EXPECT_THAT(Describe(m), EndsWith("and (isn't equal to 11)")); |
|
AllOfMatches(11, m); |
|
} |
|
|
|
// Tests that monomorphic matchers are safely cast by the AllOf matcher. |
|
TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) { |
|
// greater_than_5 and less_than_10 are monomorphic matchers. |
|
Matcher<int> greater_than_5 = Gt(5); |
|
Matcher<int> less_than_10 = Lt(10); |
|
|
|
Matcher<const int&> m = AllOf(greater_than_5, less_than_10); |
|
Matcher<int&> m2 = AllOf(greater_than_5, less_than_10); |
|
Matcher<int&> m3 = AllOf(greater_than_5, m2); |
|
|
|
// Tests that BothOf works when composing itself. |
|
Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10); |
|
Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10); |
|
} |
|
|
|
TEST(AllOfTest, ExplainsResult) { |
|
Matcher<int> m; |
|
|
|
// Successful match. Both matchers need to explain. The second |
|
// matcher doesn't give an explanation, so only the first matcher's |
|
// explanation is printed. |
|
m = AllOf(GreaterThan(10), Lt(30)); |
|
EXPECT_EQ("which is 15 more than 10", Explain(m, 25)); |
|
|
|
// Successful match. Both matchers need to explain. |
|
m = AllOf(GreaterThan(10), GreaterThan(20)); |
|
EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20", |
|
Explain(m, 30)); |
|
|
|
// Successful match. All matchers need to explain. The second |
|
// matcher doesn't given an explanation. |
|
m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20)); |
|
EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20", |
|
Explain(m, 25)); |
|
|
|
// Successful match. All matchers need to explain. |
|
m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); |
|
EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, " |
|
"and which is 10 more than 30", |
|
Explain(m, 40)); |
|
|
|
// Failed match. The first matcher, which failed, needs to |
|
// explain. |
|
m = AllOf(GreaterThan(10), GreaterThan(20)); |
|
EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); |
|
|
|
// Failed match. The second matcher, which failed, needs to |
|
// explain. Since it doesn't given an explanation, nothing is |
|
// printed. |
|
m = AllOf(GreaterThan(10), Lt(30)); |
|
EXPECT_EQ("", Explain(m, 40)); |
|
|
|
// Failed match. The second matcher, which failed, needs to |
|
// explain. |
|
m = AllOf(GreaterThan(10), GreaterThan(20)); |
|
EXPECT_EQ("which is 5 less than 20", Explain(m, 15)); |
|
} |
|
|
|
// Helper to allow easy testing of AnyOf matchers with num parameters. |
|
static void AnyOfMatches(int num, const Matcher<int>& m) { |
|
SCOPED_TRACE(Describe(m)); |
|
EXPECT_FALSE(m.Matches(0)); |
|
for (int i = 1; i <= num; ++i) { |
|
EXPECT_TRUE(m.Matches(i)); |
|
} |
|
EXPECT_FALSE(m.Matches(num + 1)); |
|
} |
|
|
|
static void AnyOfStringMatches(int num, const Matcher<std::string>& m) { |
|
SCOPED_TRACE(Describe(m)); |
|
EXPECT_FALSE(m.Matches(std::to_string(0))); |
|
|
|
for (int i = 1; i <= num; ++i) { |
|
EXPECT_TRUE(m.Matches(std::to_string(i))); |
|
} |
|
EXPECT_FALSE(m.Matches(std::to_string(num + 1))); |
|
} |
|
|
|
// Tests that AnyOf(m1, ..., mn) matches any value that matches at |
|
// least one of the given matchers. |
|
TEST(AnyOfTest, MatchesWhenAnyMatches) { |
|
Matcher<int> m; |
|
m = AnyOf(Le(1), Ge(3)); |
|
EXPECT_TRUE(m.Matches(1)); |
|
EXPECT_TRUE(m.Matches(4)); |
|
EXPECT_FALSE(m.Matches(2)); |
|
|
|
m = AnyOf(Lt(0), Eq(1), Eq(2)); |
|
EXPECT_TRUE(m.Matches(-1)); |
|
EXPECT_TRUE(m.Matches(1)); |
|
EXPECT_TRUE(m.Matches(2)); |
|
EXPECT_FALSE(m.Matches(0)); |
|
|
|
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); |
|
EXPECT_TRUE(m.Matches(-1)); |
|
EXPECT_TRUE(m.Matches(1)); |
|
EXPECT_TRUE(m.Matches(2)); |
|
EXPECT_TRUE(m.Matches(3)); |
|
EXPECT_FALSE(m.Matches(0)); |
|
|
|
m = AnyOf(Le(0), Gt(10), 3, 5, 7); |
|
EXPECT_TRUE(m.Matches(0)); |
|
EXPECT_TRUE(m.Matches(11)); |
|
EXPECT_TRUE(m.Matches(3)); |
|
EXPECT_FALSE(m.Matches(2)); |
|
|
|
// The following tests for varying number of sub-matchers. Due to the way |
|
// the sub-matchers are handled it is enough to test every sub-matcher once |
|
// with sub-matchers using the same matcher type. Varying matcher types are |
|
// checked for above. |
|
AnyOfMatches(2, AnyOf(1, 2)); |
|
AnyOfMatches(3, AnyOf(1, 2, 3)); |
|
AnyOfMatches(4, AnyOf(1, 2, 3, 4)); |
|
AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5)); |
|
AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6)); |
|
AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7)); |
|
AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8)); |
|
AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9)); |
|
AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); |
|
} |
|
|
|
// Tests the variadic version of the AnyOfMatcher. |
|
TEST(AnyOfTest, VariadicMatchesWhenAnyMatches) { |
|
// Also make sure AnyOf is defined in the right namespace and does not depend |
|
// on ADL. |
|
Matcher<int> m = ::testing::AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); |
|
|
|
EXPECT_THAT(Describe(m), EndsWith("or (is equal to 11)")); |
|
AnyOfMatches(11, m); |
|
AnyOfMatches(50, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, |
|
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, |
|
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
|
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, |
|
41, 42, 43, 44, 45, 46, 47, 48, 49, 50)); |
|
AnyOfStringMatches( |
|
50, AnyOf("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", |
|
"13", "14", "15", "16", "17", "18", "19", "20", "21", "22", |
|
"23", "24", "25", "26", "27", "28", "29", "30", "31", "32", |
|
"33", "34", "35", "36", "37", "38", "39", "40", "41", "42", |
|
"43", "44", "45", "46", "47", "48", "49", "50")); |
|
} |
|
|
|
// Tests the variadic version of the ElementsAreMatcher |
|
TEST(ElementsAreTest, HugeMatcher) { |
|
vector<int> test_vector{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; |
|
|
|
EXPECT_THAT(test_vector, |
|
ElementsAre(Eq(1), Eq(2), Lt(13), Eq(4), Eq(5), Eq(6), Eq(7), |
|
Eq(8), Eq(9), Eq(10), Gt(1), Eq(12))); |
|
} |
|
|
|
// Tests the variadic version of the UnorderedElementsAreMatcher |
|
TEST(ElementsAreTest, HugeMatcherStr) { |
|
vector<std::string> test_vector{ |
|
"literal_string", "", "", "", "", "", "", "", "", "", "", ""}; |
|
|
|
EXPECT_THAT(test_vector, UnorderedElementsAre("literal_string", _, _, _, _, _, |
|
_, _, _, _, _, _)); |
|
} |
|
|
|
// Tests the variadic version of the UnorderedElementsAreMatcher |
|
TEST(ElementsAreTest, HugeMatcherUnordered) { |
|
vector<int> test_vector{2, 1, 8, 5, 4, 6, 7, 3, 9, 12, 11, 10}; |
|
|
|
EXPECT_THAT(test_vector, UnorderedElementsAre( |
|
Eq(2), Eq(1), Gt(7), Eq(5), Eq(4), Eq(6), Eq(7), |
|
Eq(3), Eq(9), Eq(12), Eq(11), Ne(122))); |
|
} |
|
|
|
|
|
// Tests that AnyOf(m1, ..., mn) describes itself properly. |
|
TEST(AnyOfTest, CanDescribeSelf) { |
|
Matcher<int> m; |
|
m = AnyOf(Le(1), Ge(3)); |
|
|
|
EXPECT_EQ("(is <= 1) or (is >= 3)", |
|
Describe(m)); |
|
|
|
m = AnyOf(Lt(0), Eq(1), Eq(2)); |
|
EXPECT_EQ("(is < 0) or (is equal to 1) or (is equal to 2)", Describe(m)); |
|
|
|
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); |
|
EXPECT_EQ("(is < 0) or (is equal to 1) or (is equal to 2) or (is equal to 3)", |
|
Describe(m)); |
|
|
|
m = AnyOf(Le(0), Gt(10), 3, 5, 7); |
|
EXPECT_EQ( |
|
"(is <= 0) or (is > 10) or (is equal to 3) or (is equal to 5) or (is " |
|
"equal to 7)", |
|
Describe(m)); |
|
} |
|
|
|
// Tests that AnyOf(m1, ..., mn) describes its negation properly. |
|
TEST(AnyOfTest, CanDescribeNegation) { |
|
Matcher<int> m; |
|
m = AnyOf(Le(1), Ge(3)); |
|
EXPECT_EQ("(isn't <= 1) and (isn't >= 3)", |
|
DescribeNegation(m)); |
|
|
|
m = AnyOf(Lt(0), Eq(1), Eq(2)); |
|
EXPECT_EQ("(isn't < 0) and (isn't equal to 1) and (isn't equal to 2)", |
|
DescribeNegation(m)); |
|
|
|
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); |
|
EXPECT_EQ( |
|
"(isn't < 0) and (isn't equal to 1) and (isn't equal to 2) and (isn't " |
|
"equal to 3)", |
|
DescribeNegation(m)); |
|
|
|
m = AnyOf(Le(0), Gt(10), 3, 5, 7); |
|
EXPECT_EQ( |
|
"(isn't <= 0) and (isn't > 10) and (isn't equal to 3) and (isn't equal " |
|
"to 5) and (isn't equal to 7)", |
|
DescribeNegation(m)); |
|
} |
|
|
|
// Tests that monomorphic matchers are safely cast by the AnyOf matcher. |
|
TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) { |
|
// greater_than_5 and less_than_10 are monomorphic matchers. |
|
Matcher<int> greater_than_5 = Gt(5); |
|
Matcher<int> less_than_10 = Lt(10); |
|
|
|
Matcher<const int&> m = AnyOf(greater_than_5, less_than_10); |
|
Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10); |
|
Matcher<int&> m3 = AnyOf(greater_than_5, m2); |
|
|
|
// Tests that EitherOf works when composing itself. |
|
Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10); |
|
Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10); |
|
} |
|
|
|
TEST(AnyOfTest, ExplainsResult) { |
|
Matcher<int> m; |
|
|
|
// Failed match. Both matchers need to explain. The second |
|
// matcher doesn't give an explanation, so only the first matcher's |
|
// explanation is printed. |
|
m = AnyOf(GreaterThan(10), Lt(0)); |
|
EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); |
|
|
|
// Failed match. Both matchers need to explain. |
|
m = AnyOf(GreaterThan(10), GreaterThan(20)); |
|
EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20", |
|
Explain(m, 5)); |
|
|
|
// Failed match. All matchers need to explain. The second |
|
// matcher doesn't given an explanation. |
|
m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30)); |
|
EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30", |
|
Explain(m, 5)); |
|
|
|
// Failed match. All matchers need to explain. |
|
m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); |
|
EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, " |
|
"and which is 25 less than 30", |
|
Explain(m, 5)); |
|
|
|
// Successful match. The first matcher, which succeeded, needs to |
|
// explain. |
|
m = AnyOf(GreaterThan(10), GreaterThan(20)); |
|
EXPECT_EQ("which is 5 more than 10", Explain(m, 15)); |
|
|
|
// Successful match. The second matcher, which succeeded, needs to |
|
// explain. Since it doesn't given an explanation, nothing is |
|
// printed. |
|
m = AnyOf(GreaterThan(10), Lt(30)); |
|
EXPECT_EQ("", Explain(m, 0)); |
|
|
|
// Successful match. The second matcher, which succeeded, needs to |
|
// explain. |
|
m = AnyOf(GreaterThan(30), GreaterThan(20)); |
|
EXPECT_EQ("which is 5 more than 20", Explain(m, 25)); |
|
} |
|
|
|
// The following predicate function and predicate functor are for |
|
// testing the Truly(predicate) matcher. |
|
|
|
// Returns non-zero if the input is positive. Note that the return |
|
// type of this function is not bool. It's OK as Truly() accepts any |
|
// unary function or functor whose return type can be implicitly |
|
// converted to bool. |
|
int IsPositive(double x) { |
|
return x > 0 ? 1 : 0; |
|
} |
|
|
|
// This functor returns true if the input is greater than the given |
|
// number. |
|
class IsGreaterThan { |
|
public: |
|
explicit IsGreaterThan(int threshold) : threshold_(threshold) {} |
|
|
|
bool operator()(int n) const { return n > threshold_; } |
|
|
|
private: |
|
int threshold_; |
|
}; |
|
|
|
// For testing Truly(). |
|
const int foo = 0; |
|
|
|
// This predicate returns true if the argument references foo and has |
|
// a zero value. |
|
bool ReferencesFooAndIsZero(const int& n) { |
|
return (&n == &foo) && (n == 0); |
|
} |
|
|
|
// Tests that Truly(predicate) matches what satisfies the given |
|
// predicate. |
|
TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) { |
|
Matcher<double> m = Truly(IsPositive); |
|
EXPECT_TRUE(m.Matches(2.0)); |
|
EXPECT_FALSE(m.Matches(-1.5)); |
|
} |
|
|
|
// Tests that Truly(predicate_functor) works too. |
|
TEST(TrulyTest, CanBeUsedWithFunctor) { |
|
Matcher<int> m = Truly(IsGreaterThan(5)); |
|
EXPECT_TRUE(m.Matches(6)); |
|
EXPECT_FALSE(m.Matches(4)); |
|
} |
|
|
|
// A class that can be implicitly converted to bool. |
|
class ConvertibleToBool { |
|
public: |
|
explicit ConvertibleToBool(int number) : number_(number) {} |
|
operator bool() const { return number_ != 0; } |
|
|
|
private: |
|
int number_; |
|
}; |
|
|
|
ConvertibleToBool IsNotZero(int number) { |
|
return ConvertibleToBool(number); |
|
} |
|
|
|
// Tests that the predicate used in Truly() may return a class that's |
|
// implicitly convertible to bool, even when the class has no |
|
// operator!(). |
|
TEST(TrulyTest, PredicateCanReturnAClassConvertibleToBool) { |
|
Matcher<int> m = Truly(IsNotZero); |
|
EXPECT_TRUE(m.Matches(1)); |
|
EXPECT_FALSE(m.Matches(0)); |
|
} |
|
|
|
// Tests that Truly(predicate) can describe itself properly. |
|
TEST(TrulyTest, CanDescribeSelf) { |
|
Matcher<double> m = Truly(IsPositive); |
|
EXPECT_EQ("satisfies the given predicate", |
|
Describe(m)); |
|
} |
|
|
|
// Tests that Truly(predicate) works when the matcher takes its |
|
// argument by reference. |
|
TEST(TrulyTest, WorksForByRefArguments) { |
|
Matcher<const int&> m = Truly(ReferencesFooAndIsZero); |
|
EXPECT_TRUE(m.Matches(foo)); |
|
int n = 0; |
|
EXPECT_FALSE(m.Matches(n)); |
|
} |
|
|
|
// Tests that Matches(m) is a predicate satisfied by whatever that |
|
// matches matcher m. |
|
TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) { |
|
EXPECT_TRUE(Matches(Ge(0))(1)); |
|
EXPECT_FALSE(Matches(Eq('a'))('b')); |
|
} |
|
|
|
// Tests that Matches(m) works when the matcher takes its argument by |
|
// reference. |
|
TEST(MatchesTest, WorksOnByRefArguments) { |
|
int m = 0, n = 0; |
|
EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n)); |
|
EXPECT_FALSE(Matches(Ref(m))(n)); |
|
} |
|
|
|
// Tests that a Matcher on non-reference type can be used in |
|
// Matches(). |
|
TEST(MatchesTest, WorksWithMatcherOnNonRefType) { |
|
Matcher<int> eq5 = Eq(5); |
|
EXPECT_TRUE(Matches(eq5)(5)); |
|
EXPECT_FALSE(Matches(eq5)(2)); |
|
} |
|
|
|
// Tests Value(value, matcher). Since Value() is a simple wrapper for |
|
// Matches(), which has been tested already, we don't spend a lot of |
|
// effort on testing Value(). |
|
TEST(ValueTest, WorksWithPolymorphicMatcher) { |
|
EXPECT_TRUE(Value("hi", StartsWith("h"))); |
|
EXPECT_FALSE(Value(5, Gt(10))); |
|
} |
|
|
|
TEST(ValueTest, WorksWithMonomorphicMatcher) { |
|
const Matcher<int> is_zero = Eq(0); |
|
EXPECT_TRUE(Value(0, is_zero)); |
|
EXPECT_FALSE(Value('a', is_zero)); |
|
|
|
int n = 0; |
|
const Matcher<const int&> ref_n = Ref(n); |
|
EXPECT_TRUE(Value(n, ref_n)); |
|
EXPECT_FALSE(Value(1, ref_n)); |
|
} |
|
|
|
TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) { |
|
StringMatchResultListener listener1; |
|
EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1)); |
|
EXPECT_EQ("% 2 == 0", listener1.str()); |
|
|
|
StringMatchResultListener listener2; |
|
EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2)); |
|
EXPECT_EQ("", listener2.str()); |
|
} |
|
|
|
TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) { |
|
const Matcher<int> is_even = PolymorphicIsEven(); |
|
StringMatchResultListener listener1; |
|
EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1)); |
|
EXPECT_EQ("% 2 == 0", listener1.str()); |
|
|
|
const Matcher<const double&> is_zero = Eq(0); |
|
StringMatchResultListener listener2; |
|
EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2)); |
|
EXPECT_EQ("", listener2.str()); |
|
} |
|
|
|
MATCHER_P(Really, inner_matcher, "") { |
|
return ExplainMatchResult(inner_matcher, arg, result_listener); |
|
} |
|
|
|
TEST(ExplainMatchResultTest, WorksInsideMATCHER) { |
|
EXPECT_THAT(0, Really(Eq(0))); |
|
} |
|
|
|
TEST(DescribeMatcherTest, WorksWithValue) { |
|
EXPECT_EQ("is equal to 42", DescribeMatcher<int>(42)); |
|
EXPECT_EQ("isn't equal to 42", DescribeMatcher<int>(42, true)); |
|
} |
|
|
|
TEST(DescribeMatcherTest, WorksWithMonomorphicMatcher) { |
|
const Matcher<int> monomorphic = Le(0); |
|
EXPECT_EQ("is <= 0", DescribeMatcher<int>(monomorphic)); |
|
EXPECT_EQ("isn't <= 0", DescribeMatcher<int>(monomorphic, true)); |
|
} |
|
|
|
TEST(DescribeMatcherTest, WorksWithPolymorphicMatcher) { |
|
EXPECT_EQ("is even", DescribeMatcher<int>(PolymorphicIsEven())); |
|
EXPECT_EQ("is odd", DescribeMatcher<int>(PolymorphicIsEven(), true)); |
|
} |
|
|
|
TEST(AllArgsTest, WorksForTuple) { |
|
EXPECT_THAT(std::make_tuple(1, 2L), AllArgs(Lt())); |
|
EXPECT_THAT(std::make_tuple(2L, 1), Not(AllArgs(Lt()))); |
|
} |
|
|
|
TEST(AllArgsTest, WorksForNonTuple) { |
|
EXPECT_THAT(42, AllArgs(Gt(0))); |
|
EXPECT_THAT('a', Not(AllArgs(Eq('b')))); |
|
} |
|
|
|
class AllArgsHelper { |
|
public: |
|
AllArgsHelper() {} |
|
|
|
MOCK_METHOD2(Helper, int(char x, int y)); |
|
|
|
private: |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper); |
|
}; |
|
|
|
TEST(AllArgsTest, WorksInWithClause) { |
|
AllArgsHelper helper; |
|
ON_CALL(helper, Helper(_, _)) |
|
.With(AllArgs(Lt())) |
|
.WillByDefault(Return(1)); |
|
EXPECT_CALL(helper, Helper(_, _)); |
|
EXPECT_CALL(helper, Helper(_, _)) |
|
.With(AllArgs(Gt())) |
|
.WillOnce(Return(2)); |
|
|
|
EXPECT_EQ(1, helper.Helper('\1', 2)); |
|
EXPECT_EQ(2, helper.Helper('a', 1)); |
|
} |
|
|
|
class OptionalMatchersHelper { |
|
public: |
|
OptionalMatchersHelper() {} |
|
|
|
MOCK_METHOD0(NoArgs, int()); |
|
|
|
MOCK_METHOD1(OneArg, int(int y)); |
|
|
|
MOCK_METHOD2(TwoArgs, int(char x, int y)); |
|
|
|
MOCK_METHOD1(Overloaded, int(char x)); |
|
MOCK_METHOD2(Overloaded, int(char x, int y)); |
|
|
|
private: |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(OptionalMatchersHelper); |
|
}; |
|
|
|
TEST(AllArgsTest, WorksWithoutMatchers) { |
|
OptionalMatchersHelper helper; |
|
|
|
ON_CALL(helper, NoArgs).WillByDefault(Return(10)); |
|
ON_CALL(helper, OneArg).WillByDefault(Return(20)); |
|
ON_CALL(helper, TwoArgs).WillByDefault(Return(30)); |
|
|
|
EXPECT_EQ(10, helper.NoArgs()); |
|
EXPECT_EQ(20, helper.OneArg(1)); |
|
EXPECT_EQ(30, helper.TwoArgs('\1', 2)); |
|
|
|
EXPECT_CALL(helper, NoArgs).Times(1); |
|
EXPECT_CALL(helper, OneArg).WillOnce(Return(100)); |
|
EXPECT_CALL(helper, OneArg(17)).WillOnce(Return(200)); |
|
EXPECT_CALL(helper, TwoArgs).Times(0); |
|
|
|
EXPECT_EQ(10, helper.NoArgs()); |
|
EXPECT_EQ(100, helper.OneArg(1)); |
|
EXPECT_EQ(200, helper.OneArg(17)); |
|
} |
|
|
|
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value |
|
// matches the matcher. |
|
TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) { |
|
ASSERT_THAT(5, Ge(2)) << "This should succeed."; |
|
ASSERT_THAT("Foo", EndsWith("oo")); |
|
EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too."; |
|
EXPECT_THAT("Hello", StartsWith("Hell")); |
|
} |
|
|
|
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value |
|
// doesn't match the matcher. |
|
TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) { |
|
// 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(), |
|
// which cannot reference auto variables. |
|
static unsigned short n; // NOLINT |
|
n = 5; |
|
|
|
// VC++ prior to version 8.0 SP1 has a bug where it will not see any |
|
// functions declared in the namespace scope from within nested classes. |
|
// EXPECT/ASSERT_(NON)FATAL_FAILURE macros use nested classes so that all |
|
// namespace-level functions invoked inside them need to be explicitly |
|
// resolved. |
|
EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Gt(10)), |
|
"Value of: n\n" |
|
"Expected: is > 10\n" |
|
" Actual: 5" + OfType("unsigned short")); |
|
n = 0; |
|
EXPECT_NONFATAL_FAILURE( |
|
EXPECT_THAT(n, ::testing::AllOf(::testing::Le(7), ::testing::Ge(5))), |
|
"Value of: n\n" |
|
"Expected: (is <= 7) and (is >= 5)\n" |
|
" Actual: 0" + OfType("unsigned short")); |
|
} |
|
|
|
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument |
|
// has a reference type. |
|
TEST(MatcherAssertionTest, WorksForByRefArguments) { |
|
// We use a static variable here as EXPECT_FATAL_FAILURE() cannot |
|
// reference auto variables. |
|
static int n; |
|
n = 0; |
|
EXPECT_THAT(n, AllOf(Le(7), Ref(n))); |
|
EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), |
|
"Value of: n\n" |
|
"Expected: does not reference the variable @"); |
|
// Tests the "Actual" part. |
|
EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), |
|
"Actual: 0" + OfType("int") + ", which is located @"); |
|
} |
|
|
|
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is |
|
// monomorphic. |
|
TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) { |
|
Matcher<const char*> starts_with_he = StartsWith("he"); |
|
ASSERT_THAT("hello", starts_with_he); |
|
|
|
Matcher<const std::string&> ends_with_ok = EndsWith("ok"); |
|
ASSERT_THAT("book", ends_with_ok); |
|
const std::string bad = "bad"; |
|
EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok), |
|
"Value of: bad\n" |
|
"Expected: ends with \"ok\"\n" |
|
" Actual: \"bad\""); |
|
Matcher<int> is_greater_than_5 = Gt(5); |
|
EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5), |
|
"Value of: 5\n" |
|
"Expected: is > 5\n" |
|
" Actual: 5" + OfType("int")); |
|
} |
|
|
|
// Tests floating-point matchers. |
|
template <typename RawType> |
|
class FloatingPointTest : public testing::Test { |
|
protected: |
|
typedef testing::internal::FloatingPoint<RawType> Floating; |
|
typedef typename Floating::Bits Bits; |
|
|
|
FloatingPointTest() |
|
: max_ulps_(Floating::kMaxUlps), |
|
zero_bits_(Floating(0).bits()), |
|
one_bits_(Floating(1).bits()), |
|
infinity_bits_(Floating(Floating::Infinity()).bits()), |
|
close_to_positive_zero_( |
|
Floating::ReinterpretBits(zero_bits_ + max_ulps_/2)), |
|
close_to_negative_zero_( |
|
-Floating::ReinterpretBits(zero_bits_ + max_ulps_ - max_ulps_/2)), |
|
further_from_negative_zero_(-Floating::ReinterpretBits( |
|
zero_bits_ + max_ulps_ + 1 - max_ulps_/2)), |
|
close_to_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_)), |
|
further_from_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_ + 1)), |
|
infinity_(Floating::Infinity()), |
|
close_to_infinity_( |
|
Floating::ReinterpretBits(infinity_bits_ - max_ulps_)), |
|
further_from_infinity_( |
|
Floating::ReinterpretBits(infinity_bits_ - max_ulps_ - 1)), |
|
max_(Floating::Max()), |
|
nan1_(Floating::ReinterpretBits(Floating::kExponentBitMask | 1)), |
|
nan2_(Floating::ReinterpretBits(Floating::kExponentBitMask | 200)) { |
|
} |
|
|
|
void TestSize() { |
|
EXPECT_EQ(sizeof(RawType), sizeof(Bits)); |
|
} |
|
|
|
// A battery of tests for FloatingEqMatcher::Matches. |
|
// matcher_maker is a pointer to a function which creates a FloatingEqMatcher. |
|
void TestMatches( |
|
testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType)) { |
|
Matcher<RawType> m1 = matcher_maker(0.0); |
|
EXPECT_TRUE(m1.Matches(-0.0)); |
|
EXPECT_TRUE(m1.Matches(close_to_positive_zero_)); |
|
EXPECT_TRUE(m1.Matches(close_to_negative_zero_)); |
|
EXPECT_FALSE(m1.Matches(1.0)); |
|
|
|
Matcher<RawType> m2 = matcher_maker(close_to_positive_zero_); |
|
EXPECT_FALSE(m2.Matches(further_from_negative_zero_)); |
|
|
|
Matcher<RawType> m3 = matcher_maker(1.0); |
|
EXPECT_TRUE(m3.Matches(close_to_one_)); |
|
EXPECT_FALSE(m3.Matches(further_from_one_)); |
|
|
|
// Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above. |
|
EXPECT_FALSE(m3.Matches(0.0)); |
|
|
|
Matcher<RawType> m4 = matcher_maker(-infinity_); |
|
EXPECT_TRUE(m4.Matches(-close_to_infinity_)); |
|
|
|
Matcher<RawType> m5 = matcher_maker(infinity_); |
|
EXPECT_TRUE(m5.Matches(close_to_infinity_)); |
|
|
|
// This is interesting as the representations of infinity_ and nan1_ |
|
// are only 1 DLP apart. |
|
EXPECT_FALSE(m5.Matches(nan1_)); |
|
|
|
// matcher_maker can produce a Matcher<const RawType&>, which is needed in |
|
// some cases. |
|
Matcher<const RawType&> m6 = matcher_maker(0.0); |
|
EXPECT_TRUE(m6.Matches(-0.0)); |
|
EXPECT_TRUE(m6.Matches(close_to_positive_zero_)); |
|
EXPECT_FALSE(m6.Matches(1.0)); |
|
|
|
// matcher_maker can produce a Matcher<RawType&>, which is needed in some |
|
// cases. |
|
Matcher<RawType&> m7 = matcher_maker(0.0); |
|
RawType x = 0.0; |
|
EXPECT_TRUE(m7.Matches(x)); |
|
x = 0.01f; |
|
EXPECT_FALSE(m7.Matches(x)); |
|
} |
|
|
|
// Pre-calculated numbers to be used by the tests. |
|
|
|
const Bits max_ulps_; |
|
|
|
const Bits zero_bits_; // The bits that represent 0.0. |
|
const Bits one_bits_; // The bits that represent 1.0. |
|
const Bits infinity_bits_; // The bits that represent +infinity. |
|
|
|
// Some numbers close to 0.0. |
|
const RawType close_to_positive_zero_; |
|
const RawType close_to_negative_zero_; |
|
const RawType further_from_negative_zero_; |
|
|
|
// Some numbers close to 1.0. |
|
const RawType close_to_one_; |
|
const RawType further_from_one_; |
|
|
|
// Some numbers close to +infinity. |
|
const RawType infinity_; |
|
const RawType close_to_infinity_; |
|
const RawType further_from_infinity_; |
|
|
|
// Maximum representable value that's not infinity. |
|
const RawType max_; |
|
|
|
// Some NaNs. |
|
const RawType nan1_; |
|
const RawType nan2_; |
|
}; |
|
|
|
// Tests floating-point matchers with fixed epsilons. |
|
template <typename RawType> |
|
class FloatingPointNearTest : public FloatingPointTest<RawType> { |
|
protected: |
|
typedef FloatingPointTest<RawType> ParentType; |
|
|
|
// A battery of tests for FloatingEqMatcher::Matches with a fixed epsilon. |
|
// matcher_maker is a pointer to a function which creates a FloatingEqMatcher. |
|
void TestNearMatches( |
|
testing::internal::FloatingEqMatcher<RawType> |
|
(*matcher_maker)(RawType, RawType)) { |
|
Matcher<RawType> m1 = matcher_maker(0.0, 0.0); |
|
EXPECT_TRUE(m1.Matches(0.0)); |
|
EXPECT_TRUE(m1.Matches(-0.0)); |
|
EXPECT_FALSE(m1.Matches(ParentType::close_to_positive_zero_)); |
|
EXPECT_FALSE(m1.Matches(ParentType::close_to_negative_zero_)); |
|
EXPECT_FALSE(m1.Matches(1.0)); |
|
|
|
Matcher<RawType> m2 = matcher_maker(0.0, 1.0); |
|
EXPECT_TRUE(m2.Matches(0.0)); |
|
EXPECT_TRUE(m2.Matches(-0.0)); |
|
EXPECT_TRUE(m2.Matches(1.0)); |
|
EXPECT_TRUE(m2.Matches(-1.0)); |
|
EXPECT_FALSE(m2.Matches(ParentType::close_to_one_)); |
|
EXPECT_FALSE(m2.Matches(-ParentType::close_to_one_)); |
|
|
|
// Check that inf matches inf, regardless of the of the specified max |
|
// absolute error. |
|
Matcher<RawType> m3 = matcher_maker(ParentType::infinity_, 0.0); |
|
EXPECT_TRUE(m3.Matches(ParentType::infinity_)); |
|
EXPECT_FALSE(m3.Matches(ParentType::close_to_infinity_)); |
|
EXPECT_FALSE(m3.Matches(-ParentType::infinity_)); |
|
|
|
Matcher<RawType> m4 = matcher_maker(-ParentType::infinity_, 0.0); |
|
EXPECT_TRUE(m4.Matches(-ParentType::infinity_)); |
|
EXPECT_FALSE(m4.Matches(-ParentType::close_to_infinity_)); |
|
EXPECT_FALSE(m4.Matches(ParentType::infinity_)); |
|
|
|
// Test various overflow scenarios. |
|
Matcher<RawType> m5 = matcher_maker(ParentType::max_, ParentType::max_); |
|
EXPECT_TRUE(m5.Matches(ParentType::max_)); |
|
EXPECT_FALSE(m5.Matches(-ParentType::max_)); |
|
|
|
Matcher<RawType> m6 = matcher_maker(-ParentType::max_, ParentType::max_); |
|
EXPECT_FALSE(m6.Matches(ParentType::max_)); |
|
EXPECT_TRUE(m6.Matches(-ParentType::max_)); |
|
|
|
Matcher<RawType> m7 = matcher_maker(ParentType::max_, 0); |
|
EXPECT_TRUE(m7.Matches(ParentType::max_)); |
|
EXPECT_FALSE(m7.Matches(-ParentType::max_)); |
|
|
|
Matcher<RawType> m8 = matcher_maker(-ParentType::max_, 0); |
|
EXPECT_FALSE(m8.Matches(ParentType::max_)); |
|
EXPECT_TRUE(m8.Matches(-ParentType::max_)); |
|
|
|
// The difference between max() and -max() normally overflows to infinity, |
|
// but it should still match if the max_abs_error is also infinity. |
|
Matcher<RawType> m9 = matcher_maker( |
|
ParentType::max_, ParentType::infinity_); |
|
EXPECT_TRUE(m8.Matches(-ParentType::max_)); |
|
|
|
// matcher_maker can produce a Matcher<const RawType&>, which is needed in |
|
// some cases. |
|
Matcher<const RawType&> m10 = matcher_maker(0.0, 1.0); |
|
EXPECT_TRUE(m10.Matches(-0.0)); |
|
EXPECT_TRUE(m10.Matches(ParentType::close_to_positive_zero_)); |
|
EXPECT_FALSE(m10.Matches(ParentType::close_to_one_)); |
|
|
|
// matcher_maker can produce a Matcher<RawType&>, which is needed in some |
|
// cases. |
|
Matcher<RawType&> m11 = matcher_maker(0.0, 1.0); |
|
RawType x = 0.0; |
|
EXPECT_TRUE(m11.Matches(x)); |
|
x = 1.0f; |
|
EXPECT_TRUE(m11.Matches(x)); |
|
x = -1.0f; |
|
EXPECT_TRUE(m11.Matches(x)); |
|
x = 1.1f; |
|
EXPECT_FALSE(m11.Matches(x)); |
|
x = -1.1f; |
|
EXPECT_FALSE(m11.Matches(x)); |
|
} |
|
}; |
|
|
|
// Instantiate FloatingPointTest for testing floats. |
|
typedef FloatingPointTest<float> FloatTest; |
|
|
|
TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) { |
|
TestMatches(&FloatEq); |
|
} |
|
|
|
TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) { |
|
TestMatches(&NanSensitiveFloatEq); |
|
} |
|
|
|
TEST_F(FloatTest, FloatEqCannotMatchNaN) { |
|
// FloatEq never matches NaN. |
|
Matcher<float> m = FloatEq(nan1_); |
|
EXPECT_FALSE(m.Matches(nan1_)); |
|
EXPECT_FALSE(m.Matches(nan2_)); |
|
EXPECT_FALSE(m.Matches(1.0)); |
|
} |
|
|
|
TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) { |
|
// NanSensitiveFloatEq will match NaN. |
|
Matcher<float> m = NanSensitiveFloatEq(nan1_); |
|
EXPECT_TRUE(m.Matches(nan1_)); |
|
EXPECT_TRUE(m.Matches(nan2_)); |
|
EXPECT_FALSE(m.Matches(1.0)); |
|
} |
|
|
|
TEST_F(FloatTest, FloatEqCanDescribeSelf) { |
|
Matcher<float> m1 = FloatEq(2.0f); |
|
EXPECT_EQ("is approximately 2", Describe(m1)); |
|
EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); |
|
|
|
Matcher<float> m2 = FloatEq(0.5f); |
|
EXPECT_EQ("is approximately 0.5", Describe(m2)); |
|
EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); |
|
|
|
Matcher<float> m3 = FloatEq(nan1_); |
|
EXPECT_EQ("never matches", Describe(m3)); |
|
EXPECT_EQ("is anything", DescribeNegation(m3)); |
|
} |
|
|
|
TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) { |
|
Matcher<float> m1 = NanSensitiveFloatEq(2.0f); |
|
EXPECT_EQ("is approximately 2", Describe(m1)); |
|
EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); |
|
|
|
Matcher<float> m2 = NanSensitiveFloatEq(0.5f); |
|
EXPECT_EQ("is approximately 0.5", Describe(m2)); |
|
EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); |
|
|
|
Matcher<float> m3 = NanSensitiveFloatEq(nan1_); |
|
EXPECT_EQ("is NaN", Describe(m3)); |
|
EXPECT_EQ("isn't NaN", DescribeNegation(m3)); |
|
} |
|
|
|
// Instantiate FloatingPointTest for testing floats with a user-specified |
|
// max absolute error. |
|
typedef FloatingPointNearTest<float> FloatNearTest; |
|
|
|
TEST_F(FloatNearTest, FloatNearMatches) { |
|
TestNearMatches(&FloatNear); |
|
} |
|
|
|
TEST_F(FloatNearTest, NanSensitiveFloatNearApproximatelyMatchesFloats) { |
|
TestNearMatches(&NanSensitiveFloatNear); |
|
} |
|
|
|
TEST_F(FloatNearTest, FloatNearCanDescribeSelf) { |
|
Matcher<float> m1 = FloatNear(2.0f, 0.5f); |
|
EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); |
|
EXPECT_EQ( |
|
"isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); |
|
|
|
Matcher<float> m2 = FloatNear(0.5f, 0.5f); |
|
EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); |
|
EXPECT_EQ( |
|
"isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); |
|
|
|
Matcher<float> m3 = FloatNear(nan1_, 0.0); |
|
EXPECT_EQ("never matches", Describe(m3)); |
|
EXPECT_EQ("is anything", DescribeNegation(m3)); |
|
} |
|
|
|
TEST_F(FloatNearTest, NanSensitiveFloatNearCanDescribeSelf) { |
|
Matcher<float> m1 = NanSensitiveFloatNear(2.0f, 0.5f); |
|
EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); |
|
EXPECT_EQ( |
|
"isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); |
|
|
|
Matcher<float> m2 = NanSensitiveFloatNear(0.5f, 0.5f); |
|
EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); |
|
EXPECT_EQ( |
|
"isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); |
|
|
|
Matcher<float> m3 = NanSensitiveFloatNear(nan1_, 0.1f); |
|
EXPECT_EQ("is NaN", Describe(m3)); |
|
EXPECT_EQ("isn't NaN", DescribeNegation(m3)); |
|
} |
|
|
|
TEST_F(FloatNearTest, FloatNearCannotMatchNaN) { |
|
// FloatNear never matches NaN. |
|
Matcher<float> m = FloatNear(ParentType::nan1_, 0.1f); |
|
EXPECT_FALSE(m.Matches(nan1_)); |
|
EXPECT_FALSE(m.Matches(nan2_)); |
|
EXPECT_FALSE(m.Matches(1.0)); |
|
} |
|
|
|
TEST_F(FloatNearTest, NanSensitiveFloatNearCanMatchNaN) { |
|
// NanSensitiveFloatNear will match NaN. |
|
Matcher<float> m = NanSensitiveFloatNear(nan1_, 0.1f); |
|
EXPECT_TRUE(m.Matches(nan1_)); |
|
EXPECT_TRUE(m.Matches(nan2_)); |
|
EXPECT_FALSE(m.Matches(1.0)); |
|
} |
|
|
|
// Instantiate FloatingPointTest for testing doubles. |
|
typedef FloatingPointTest<double> DoubleTest; |
|
|
|
TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) { |
|
TestMatches(&DoubleEq); |
|
} |
|
|
|
TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) { |
|
TestMatches(&NanSensitiveDoubleEq); |
|
} |
|
|
|
TEST_F(DoubleTest, DoubleEqCannotMatchNaN) { |
|
// DoubleEq never matches NaN. |
|
Matcher<double> m = DoubleEq(nan1_); |
|
EXPECT_FALSE(m.Matches(nan1_)); |
|
EXPECT_FALSE(m.Matches(nan2_)); |
|
EXPECT_FALSE(m.Matches(1.0)); |
|
} |
|
|
|
TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) { |
|
// NanSensitiveDoubleEq will match NaN. |
|
Matcher<double> m = NanSensitiveDoubleEq(nan1_); |
|
EXPECT_TRUE(m.Matches(nan1_)); |
|
EXPECT_TRUE(m.Matches(nan2_)); |
|
EXPECT_FALSE(m.Matches(1.0)); |
|
} |
|
|
|
TEST_F(DoubleTest, DoubleEqCanDescribeSelf) { |
|
Matcher<double> m1 = DoubleEq(2.0); |
|
EXPECT_EQ("is approximately 2", Describe(m1)); |
|
EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); |
|
|
|
Matcher<double> m2 = DoubleEq(0.5); |
|
EXPECT_EQ("is approximately 0.5", Describe(m2)); |
|
EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); |
|
|
|
Matcher<double> m3 = DoubleEq(nan1_); |
|
EXPECT_EQ("never matches", Describe(m3)); |
|
EXPECT_EQ("is anything", DescribeNegation(m3)); |
|
} |
|
|
|
TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) { |
|
Matcher<double> m1 = NanSensitiveDoubleEq(2.0); |
|
EXPECT_EQ("is approximately 2", Describe(m1)); |
|
EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); |
|
|
|
Matcher<double> m2 = NanSensitiveDoubleEq(0.5); |
|
EXPECT_EQ("is approximately 0.5", Describe(m2)); |
|
EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); |
|
|
|
Matcher<double> m3 = NanSensitiveDoubleEq(nan1_); |
|
EXPECT_EQ("is NaN", Describe(m3)); |
|
EXPECT_EQ("isn't NaN", DescribeNegation(m3)); |
|
} |
|
|
|
// Instantiate FloatingPointTest for testing floats with a user-specified |
|
// max absolute error. |
|
typedef FloatingPointNearTest<double> DoubleNearTest; |
|
|
|
TEST_F(DoubleNearTest, DoubleNearMatches) { |
|
TestNearMatches(&DoubleNear); |
|
} |
|
|
|
TEST_F(DoubleNearTest, NanSensitiveDoubleNearApproximatelyMatchesDoubles) { |
|
TestNearMatches(&NanSensitiveDoubleNear); |
|
} |
|
|
|
TEST_F(DoubleNearTest, DoubleNearCanDescribeSelf) { |
|
Matcher<double> m1 = DoubleNear(2.0, 0.5); |
|
EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); |
|
EXPECT_EQ( |
|
"isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); |
|
|
|
Matcher<double> m2 = DoubleNear(0.5, 0.5); |
|
EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); |
|
EXPECT_EQ( |
|
"isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); |
|
|
|
Matcher<double> m3 = DoubleNear(nan1_, 0.0); |
|
EXPECT_EQ("never matches", Describe(m3)); |
|
EXPECT_EQ("is anything", DescribeNegation(m3)); |
|
} |
|
|
|
TEST_F(DoubleNearTest, ExplainsResultWhenMatchFails) { |
|
EXPECT_EQ("", Explain(DoubleNear(2.0, 0.1), 2.05)); |
|
EXPECT_EQ("which is 0.2 from 2", Explain(DoubleNear(2.0, 0.1), 2.2)); |
|
EXPECT_EQ("which is -0.3 from 2", Explain(DoubleNear(2.0, 0.1), 1.7)); |
|
|
|
const std::string explanation = |
|
Explain(DoubleNear(2.1, 1e-10), 2.1 + 1.2e-10); |
|
// Different C++ implementations may print floating-point numbers |
|
// slightly differently. |
|
EXPECT_TRUE(explanation == "which is 1.2e-10 from 2.1" || // GCC |
|
explanation == "which is 1.2e-010 from 2.1") // MSVC |
|
<< " where explanation is \"" << explanation << "\"."; |
|
} |
|
|
|
TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanDescribeSelf) { |
|
Matcher<double> m1 = NanSensitiveDoubleNear(2.0, 0.5); |
|
EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); |
|
EXPECT_EQ( |
|
"isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); |
|
|
|
Matcher<double> m2 = NanSensitiveDoubleNear(0.5, 0.5); |
|
EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); |
|
EXPECT_EQ( |
|
"isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); |
|
|
|
Matcher<double> m3 = NanSensitiveDoubleNear(nan1_, 0.1); |
|
EXPECT_EQ("is NaN", Describe(m3)); |
|
EXPECT_EQ("isn't NaN", DescribeNegation(m3)); |
|
} |
|
|
|
TEST_F(DoubleNearTest, DoubleNearCannotMatchNaN) { |
|
// DoubleNear never matches NaN. |
|
Matcher<double> m = DoubleNear(ParentType::nan1_, 0.1); |
|
EXPECT_FALSE(m.Matches(nan1_)); |
|
EXPECT_FALSE(m.Matches(nan2_)); |
|
EXPECT_FALSE(m.Matches(1.0)); |
|
} |
|
|
|
TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanMatchNaN) { |
|
// NanSensitiveDoubleNear will match NaN. |
|
Matcher<double> m = NanSensitiveDoubleNear(nan1_, 0.1); |
|
EXPECT_TRUE(m.Matches(nan1_)); |
|
EXPECT_TRUE(m.Matches(nan2_)); |
|
EXPECT_FALSE(m.Matches(1.0)); |
|
} |
|
|
|
TEST(PointeeTest, RawPointer) { |
|
const Matcher<int*> m = Pointee(Ge(0)); |
|
|
|
int n = 1; |
|
EXPECT_TRUE(m.Matches(&n)); |
|
n = -1; |
|
EXPECT_FALSE(m.Matches(&n)); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
} |
|
|
|
TEST(PointeeTest, RawPointerToConst) { |
|
const Matcher<const double*> m = Pointee(Ge(0)); |
|
|
|
double x = 1; |
|
EXPECT_TRUE(m.Matches(&x)); |
|
x = -1; |
|
EXPECT_FALSE(m.Matches(&x)); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
} |
|
|
|
TEST(PointeeTest, ReferenceToConstRawPointer) { |
|
const Matcher<int* const &> m = Pointee(Ge(0)); |
|
|
|
int n = 1; |
|
EXPECT_TRUE(m.Matches(&n)); |
|
n = -1; |
|
EXPECT_FALSE(m.Matches(&n)); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
} |
|
|
|
TEST(PointeeTest, ReferenceToNonConstRawPointer) { |
|
const Matcher<double* &> m = Pointee(Ge(0)); |
|
|
|
double x = 1.0; |
|
double* p = &x; |
|
EXPECT_TRUE(m.Matches(p)); |
|
x = -1; |
|
EXPECT_FALSE(m.Matches(p)); |
|
p = nullptr; |
|
EXPECT_FALSE(m.Matches(p)); |
|
} |
|
|
|
MATCHER_P(FieldIIs, inner_matcher, "") { |
|
return ExplainMatchResult(inner_matcher, arg.i, result_listener); |
|
} |
|
|
|
#if GTEST_HAS_RTTI |
|
TEST(WhenDynamicCastToTest, SameType) { |
|
Derived derived; |
|
derived.i = 4; |
|
|
|
// Right type. A pointer is passed down. |
|
Base* as_base_ptr = &derived; |
|
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Not(IsNull()))); |
|
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(4)))); |
|
EXPECT_THAT(as_base_ptr, |
|
Not(WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(5))))); |
|
} |
|
|
|
TEST(WhenDynamicCastToTest, WrongTypes) { |
|
Base base; |
|
Derived derived; |
|
OtherDerived other_derived; |
|
|
|
// Wrong types. NULL is passed. |
|
EXPECT_THAT(&base, Not(WhenDynamicCastTo<Derived*>(Pointee(_)))); |
|
EXPECT_THAT(&base, WhenDynamicCastTo<Derived*>(IsNull())); |
|
Base* as_base_ptr = &derived; |
|
EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<OtherDerived*>(Pointee(_)))); |
|
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<OtherDerived*>(IsNull())); |
|
as_base_ptr = &other_derived; |
|
EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<Derived*>(Pointee(_)))); |
|
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull())); |
|
} |
|
|
|
TEST(WhenDynamicCastToTest, AlreadyNull) { |
|
// Already NULL. |
|
Base* as_base_ptr = nullptr; |
|
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull())); |
|
} |
|
|
|
struct AmbiguousCastTypes { |
|
class VirtualDerived : public virtual Base {}; |
|
class DerivedSub1 : public VirtualDerived {}; |
|
class DerivedSub2 : public VirtualDerived {}; |
|
class ManyDerivedInHierarchy : public DerivedSub1, public DerivedSub2 {}; |
|
}; |
|
|
|
TEST(WhenDynamicCastToTest, AmbiguousCast) { |
|
AmbiguousCastTypes::DerivedSub1 sub1; |
|
AmbiguousCastTypes::ManyDerivedInHierarchy many_derived; |
|
// Multiply derived from Base. dynamic_cast<> returns NULL. |
|
Base* as_base_ptr = |
|
static_cast<AmbiguousCastTypes::DerivedSub1*>(&many_derived); |
|
EXPECT_THAT(as_base_ptr, |
|
WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(IsNull())); |
|
as_base_ptr = &sub1; |
|
EXPECT_THAT( |
|
as_base_ptr, |
|
WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(Not(IsNull()))); |
|
} |
|
|
|
TEST(WhenDynamicCastToTest, Describe) { |
|
Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_)); |
|
const std::string prefix = |
|
"when dynamic_cast to " + internal::GetTypeName<Derived*>() + ", "; |
|
EXPECT_EQ(prefix + "points to a value that is anything", Describe(matcher)); |
|
EXPECT_EQ(prefix + "does not point to a value that is anything", |
|
DescribeNegation(matcher)); |
|
} |
|
|
|
TEST(WhenDynamicCastToTest, Explain) { |
|
Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_)); |
|
Base* null = nullptr; |
|
EXPECT_THAT(Explain(matcher, null), HasSubstr("NULL")); |
|
Derived derived; |
|
EXPECT_TRUE(matcher.Matches(&derived)); |
|
EXPECT_THAT(Explain(matcher, &derived), HasSubstr("which points to ")); |
|
|
|
// With references, the matcher itself can fail. Test for that one. |
|
Matcher<const Base&> ref_matcher = WhenDynamicCastTo<const OtherDerived&>(_); |
|
EXPECT_THAT(Explain(ref_matcher, derived), |
|
HasSubstr("which cannot be dynamic_cast")); |
|
} |
|
|
|
TEST(WhenDynamicCastToTest, GoodReference) { |
|
Derived derived; |
|
derived.i = 4; |
|
Base& as_base_ref = derived; |
|
EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(FieldIIs(4))); |
|
EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(Not(FieldIIs(5)))); |
|
} |
|
|
|
TEST(WhenDynamicCastToTest, BadReference) { |
|
Derived derived; |
|
Base& as_base_ref = derived; |
|
EXPECT_THAT(as_base_ref, Not(WhenDynamicCastTo<const OtherDerived&>(_))); |
|
} |
|
#endif // GTEST_HAS_RTTI |
|
|
|
// Minimal const-propagating pointer. |
|
template <typename T> |
|
class ConstPropagatingPtr { |
|
public: |
|
typedef T element_type; |
|
|
|
ConstPropagatingPtr() : val_() {} |
|
explicit ConstPropagatingPtr(T* t) : val_(t) {} |
|
ConstPropagatingPtr(const ConstPropagatingPtr& other) : val_(other.val_) {} |
|
|
|
T* get() { return val_; } |
|
T& operator*() { return *val_; } |
|
// Most smart pointers return non-const T* and T& from the next methods. |
|
const T* get() const { return val_; } |
|
const T& operator*() const { return *val_; } |
|
|
|
private: |
|
T* val_; |
|
}; |
|
|
|
TEST(PointeeTest, WorksWithConstPropagatingPointers) { |
|
const Matcher< ConstPropagatingPtr<int> > m = Pointee(Lt(5)); |
|
int three = 3; |
|
const ConstPropagatingPtr<int> co(&three); |
|
ConstPropagatingPtr<int> o(&three); |
|
EXPECT_TRUE(m.Matches(o)); |
|
EXPECT_TRUE(m.Matches(co)); |
|
*o = 6; |
|
EXPECT_FALSE(m.Matches(o)); |
|
EXPECT_FALSE(m.Matches(ConstPropagatingPtr<int>())); |
|
} |
|
|
|
TEST(PointeeTest, NeverMatchesNull) { |
|
const Matcher<const char*> m = Pointee(_); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
} |
|
|
|
// Tests that we can write Pointee(value) instead of Pointee(Eq(value)). |
|
TEST(PointeeTest, MatchesAgainstAValue) { |
|
const Matcher<int*> m = Pointee(5); |
|
|
|
int n = 5; |
|
EXPECT_TRUE(m.Matches(&n)); |
|
n = -1; |
|
EXPECT_FALSE(m.Matches(&n)); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
} |
|
|
|
TEST(PointeeTest, CanDescribeSelf) { |
|
const Matcher<int*> m = Pointee(Gt(3)); |
|
EXPECT_EQ("points to a value that is > 3", Describe(m)); |
|
EXPECT_EQ("does not point to a value that is > 3", |
|
DescribeNegation(m)); |
|
} |
|
|
|
TEST(PointeeTest, CanExplainMatchResult) { |
|
const Matcher<const std::string*> m = Pointee(StartsWith("Hi")); |
|
|
|
EXPECT_EQ("", Explain(m, static_cast<const std::string*>(nullptr))); |
|
|
|
const Matcher<long*> m2 = Pointee(GreaterThan(1)); // NOLINT |
|
long n = 3; // NOLINT |
|
EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1", |
|
Explain(m2, &n)); |
|
} |
|
|
|
TEST(PointeeTest, AlwaysExplainsPointee) { |
|
const Matcher<int*> m = Pointee(0); |
|
int n = 42; |
|
EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n)); |
|
} |
|
|
|
// An uncopyable class. |
|
class Uncopyable { |
|
public: |
|
Uncopyable() : value_(-1) {} |
|
explicit Uncopyable(int a_value) : value_(a_value) {} |
|
|
|
int value() const { return value_; } |
|
void set_value(int i) { value_ = i; } |
|
|
|
private: |
|
int value_; |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable); |
|
}; |
|
|
|
// Returns true if x.value() is positive. |
|
bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; } |
|
|
|
MATCHER_P(UncopyableIs, inner_matcher, "") { |
|
return ExplainMatchResult(inner_matcher, arg.value(), result_listener); |
|
} |
|
|
|
// A user-defined struct for testing Field(). |
|
struct AStruct { |
|
AStruct() : x(0), y(1.0), z(5), p(nullptr) {} |
|
AStruct(const AStruct& rhs) |
|
: x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {} |
|
|
|
int x; // A non-const field. |
|
const double y; // A const field. |
|
Uncopyable z; // An uncopyable field. |
|
const char* p; // A pointer field. |
|
|
|
private: |
|
GTEST_DISALLOW_ASSIGN_(AStruct); |
|
}; |
|
|
|
// A derived struct for testing Field(). |
|
struct DerivedStruct : public AStruct { |
|
char ch; |
|
|
|
private: |
|
GTEST_DISALLOW_ASSIGN_(DerivedStruct); |
|
}; |
|
|
|
// Tests that Field(&Foo::field, ...) works when field is non-const. |
|
TEST(FieldTest, WorksForNonConstField) { |
|
Matcher<AStruct> m = Field(&AStruct::x, Ge(0)); |
|
Matcher<AStruct> m_with_name = Field("x", &AStruct::x, Ge(0)); |
|
|
|
AStruct a; |
|
EXPECT_TRUE(m.Matches(a)); |
|
EXPECT_TRUE(m_with_name.Matches(a)); |
|
a.x = -1; |
|
EXPECT_FALSE(m.Matches(a)); |
|
EXPECT_FALSE(m_with_name.Matches(a)); |
|
} |
|
|
|
// Tests that Field(&Foo::field, ...) works when field is const. |
|
TEST(FieldTest, WorksForConstField) { |
|
AStruct a; |
|
|
|
Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0)); |
|
Matcher<AStruct> m_with_name = Field("y", &AStruct::y, Ge(0.0)); |
|
EXPECT_TRUE(m.Matches(a)); |
|
EXPECT_TRUE(m_with_name.Matches(a)); |
|
m = Field(&AStruct::y, Le(0.0)); |
|
m_with_name = Field("y", &AStruct::y, Le(0.0)); |
|
EXPECT_FALSE(m.Matches(a)); |
|
EXPECT_FALSE(m_with_name.Matches(a)); |
|
} |
|
|
|
// Tests that Field(&Foo::field, ...) works when field is not copyable. |
|
TEST(FieldTest, WorksForUncopyableField) { |
|
AStruct a; |
|
|
|
Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive)); |
|
EXPECT_TRUE(m.Matches(a)); |
|
m = Field(&AStruct::z, Not(Truly(ValueIsPositive))); |
|
EXPECT_FALSE(m.Matches(a)); |
|
} |
|
|
|
// Tests that Field(&Foo::field, ...) works when field is a pointer. |
|
TEST(FieldTest, WorksForPointerField) { |
|
// Matching against NULL. |
|
Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(nullptr)); |
|
AStruct a; |
|
EXPECT_TRUE(m.Matches(a)); |
|
a.p = "hi"; |
|
EXPECT_FALSE(m.Matches(a)); |
|
|
|
// Matching a pointer that is not NULL. |
|
m = Field(&AStruct::p, StartsWith("hi")); |
|
a.p = "hill"; |
|
EXPECT_TRUE(m.Matches(a)); |
|
a.p = "hole"; |
|
EXPECT_FALSE(m.Matches(a)); |
|
} |
|
|
|
// Tests that Field() works when the object is passed by reference. |
|
TEST(FieldTest, WorksForByRefArgument) { |
|
Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); |
|
|
|
AStruct a; |
|
EXPECT_TRUE(m.Matches(a)); |
|
a.x = -1; |
|
EXPECT_FALSE(m.Matches(a)); |
|
} |
|
|
|
// Tests that Field(&Foo::field, ...) works when the argument's type |
|
// is a sub-type of Foo. |
|
TEST(FieldTest, WorksForArgumentOfSubType) { |
|
// Note that the matcher expects DerivedStruct but we say AStruct |
|
// inside Field(). |
|
Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0)); |
|
|
|
DerivedStruct d; |
|
EXPECT_TRUE(m.Matches(d)); |
|
d.x = -1; |
|
EXPECT_FALSE(m.Matches(d)); |
|
} |
|
|
|
// Tests that Field(&Foo::field, m) works when field's type and m's |
|
// argument type are compatible but not the same. |
|
TEST(FieldTest, WorksForCompatibleMatcherType) { |
|
// The field is an int, but the inner matcher expects a signed char. |
|
Matcher<const AStruct&> m = Field(&AStruct::x, |
|
Matcher<signed char>(Ge(0))); |
|
|
|
AStruct a; |
|
EXPECT_TRUE(m.Matches(a)); |
|
a.x = -1; |
|
EXPECT_FALSE(m.Matches(a)); |
|
} |
|
|
|
// Tests that Field() can describe itself. |
|
TEST(FieldTest, CanDescribeSelf) { |
|
Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); |
|
|
|
EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); |
|
EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); |
|
} |
|
|
|
TEST(FieldTest, CanDescribeSelfWithFieldName) { |
|
Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0)); |
|
|
|
EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); |
|
EXPECT_EQ("is an object whose field `field_name` isn't >= 0", |
|
DescribeNegation(m)); |
|
} |
|
|
|
// Tests that Field() can explain the match result. |
|
TEST(FieldTest, CanExplainMatchResult) { |
|
Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); |
|
|
|
AStruct a; |
|
a.x = 1; |
|
EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a)); |
|
|
|
m = Field(&AStruct::x, GreaterThan(0)); |
|
EXPECT_EQ( |
|
"whose given field is 1" + OfType("int") + ", which is 1 more than 0", |
|
Explain(m, a)); |
|
} |
|
|
|
TEST(FieldTest, CanExplainMatchResultWithFieldName) { |
|
Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0)); |
|
|
|
AStruct a; |
|
a.x = 1; |
|
EXPECT_EQ("whose field `field_name` is 1" + OfType("int"), Explain(m, a)); |
|
|
|
m = Field("field_name", &AStruct::x, GreaterThan(0)); |
|
EXPECT_EQ("whose field `field_name` is 1" + OfType("int") + |
|
", which is 1 more than 0", |
|
Explain(m, a)); |
|
} |
|
|
|
// Tests that Field() works when the argument is a pointer to const. |
|
TEST(FieldForPointerTest, WorksForPointerToConst) { |
|
Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); |
|
|
|
AStruct a; |
|
EXPECT_TRUE(m.Matches(&a)); |
|
a.x = -1; |
|
EXPECT_FALSE(m.Matches(&a)); |
|
} |
|
|
|
// Tests that Field() works when the argument is a pointer to non-const. |
|
TEST(FieldForPointerTest, WorksForPointerToNonConst) { |
|
Matcher<AStruct*> m = Field(&AStruct::x, Ge(0)); |
|
|
|
AStruct a; |
|
EXPECT_TRUE(m.Matches(&a)); |
|
a.x = -1; |
|
EXPECT_FALSE(m.Matches(&a)); |
|
} |
|
|
|
// Tests that Field() works when the argument is a reference to a const pointer. |
|
TEST(FieldForPointerTest, WorksForReferenceToConstPointer) { |
|
Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0)); |
|
|
|
AStruct a; |
|
EXPECT_TRUE(m.Matches(&a)); |
|
a.x = -1; |
|
EXPECT_FALSE(m.Matches(&a)); |
|
} |
|
|
|
// Tests that Field() does not match the NULL pointer. |
|
TEST(FieldForPointerTest, DoesNotMatchNull) { |
|
Matcher<const AStruct*> m = Field(&AStruct::x, _); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
} |
|
|
|
// Tests that Field(&Foo::field, ...) works when the argument's type |
|
// is a sub-type of const Foo*. |
|
TEST(FieldForPointerTest, WorksForArgumentOfSubType) { |
|
// Note that the matcher expects DerivedStruct but we say AStruct |
|
// inside Field(). |
|
Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0)); |
|
|
|
DerivedStruct d; |
|
EXPECT_TRUE(m.Matches(&d)); |
|
d.x = -1; |
|
EXPECT_FALSE(m.Matches(&d)); |
|
} |
|
|
|
// Tests that Field() can describe itself when used to match a pointer. |
|
TEST(FieldForPointerTest, CanDescribeSelf) { |
|
Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); |
|
|
|
EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); |
|
EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); |
|
} |
|
|
|
TEST(FieldForPointerTest, CanDescribeSelfWithFieldName) { |
|
Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0)); |
|
|
|
EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); |
|
EXPECT_EQ("is an object whose field `field_name` isn't >= 0", |
|
DescribeNegation(m)); |
|
} |
|
|
|
// Tests that Field() can explain the result of matching a pointer. |
|
TEST(FieldForPointerTest, CanExplainMatchResult) { |
|
Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); |
|
|
|
AStruct a; |
|
a.x = 1; |
|
EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(nullptr))); |
|
EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"), |
|
Explain(m, &a)); |
|
|
|
m = Field(&AStruct::x, GreaterThan(0)); |
|
EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") + |
|
", which is 1 more than 0", Explain(m, &a)); |
|
} |
|
|
|
TEST(FieldForPointerTest, CanExplainMatchResultWithFieldName) { |
|
Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0)); |
|
|
|
AStruct a; |
|
a.x = 1; |
|
EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(nullptr))); |
|
EXPECT_EQ( |
|
"which points to an object whose field `field_name` is 1" + OfType("int"), |
|
Explain(m, &a)); |
|
|
|
m = Field("field_name", &AStruct::x, GreaterThan(0)); |
|
EXPECT_EQ("which points to an object whose field `field_name` is 1" + |
|
OfType("int") + ", which is 1 more than 0", |
|
Explain(m, &a)); |
|
} |
|
|
|
// A user-defined class for testing Property(). |
|
class AClass { |
|
public: |
|
AClass() : n_(0) {} |
|
|
|
// A getter that returns a non-reference. |
|
int n() const { return n_; } |
|
|
|
void set_n(int new_n) { n_ = new_n; } |
|
|
|
// A getter that returns a reference to const. |
|
const std::string& s() const { return s_; } |
|
|
|
const std::string& s_ref() const & { return s_; } |
|
|
|
void set_s(const std::string& new_s) { s_ = new_s; } |
|
|
|
// A getter that returns a reference to non-const. |
|
double& x() const { return x_; } |
|
|
|
private: |
|
int n_; |
|
std::string s_; |
|
|
|
static double x_; |
|
}; |
|
|
|
double AClass::x_ = 0.0; |
|
|
|
// A derived class for testing Property(). |
|
class DerivedClass : public AClass { |
|
public: |
|
int k() const { return k_; } |
|
private: |
|
int k_; |
|
}; |
|
|
|
// Tests that Property(&Foo::property, ...) works when property() |
|
// returns a non-reference. |
|
TEST(PropertyTest, WorksForNonReferenceProperty) { |
|
Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); |
|
Matcher<const AClass&> m_with_name = Property("n", &AClass::n, Ge(0)); |
|
|
|
AClass a; |
|
a.set_n(1); |
|
EXPECT_TRUE(m.Matches(a)); |
|
EXPECT_TRUE(m_with_name.Matches(a)); |
|
|
|
a.set_n(-1); |
|
EXPECT_FALSE(m.Matches(a)); |
|
EXPECT_FALSE(m_with_name.Matches(a)); |
|
} |
|
|
|
// Tests that Property(&Foo::property, ...) works when property() |
|
// returns a reference to const. |
|
TEST(PropertyTest, WorksForReferenceToConstProperty) { |
|
Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi")); |
|
Matcher<const AClass&> m_with_name = |
|
Property("s", &AClass::s, StartsWith("hi")); |
|
|
|
AClass a; |
|
a.set_s("hill"); |
|
EXPECT_TRUE(m.Matches(a)); |
|
EXPECT_TRUE(m_with_name.Matches(a)); |
|
|
|
a.set_s("hole"); |
|
EXPECT_FALSE(m.Matches(a)); |
|
EXPECT_FALSE(m_with_name.Matches(a)); |
|
} |
|
|
|
// Tests that Property(&Foo::property, ...) works when property() is |
|
// ref-qualified. |
|
TEST(PropertyTest, WorksForRefQualifiedProperty) { |
|
Matcher<const AClass&> m = Property(&AClass::s_ref, StartsWith("hi")); |
|
Matcher<const AClass&> m_with_name = |
|
Property("s", &AClass::s_ref, StartsWith("hi")); |
|
|
|
AClass a; |
|
a.set_s("hill"); |
|
EXPECT_TRUE(m.Matches(a)); |
|
EXPECT_TRUE(m_with_name.Matches(a)); |
|
|
|
a.set_s("hole"); |
|
EXPECT_FALSE(m.Matches(a)); |
|
EXPECT_FALSE(m_with_name.Matches(a)); |
|
} |
|
|
|
// Tests that Property(&Foo::property, ...) works when property() |
|
// returns a reference to non-const. |
|
TEST(PropertyTest, WorksForReferenceToNonConstProperty) { |
|
double x = 0.0; |
|
AClass a; |
|
|
|
Matcher<const AClass&> m = Property(&AClass::x, Ref(x)); |
|
EXPECT_FALSE(m.Matches(a)); |
|
|
|
m = Property(&AClass::x, Not(Ref(x))); |
|
EXPECT_TRUE(m.Matches(a)); |
|
} |
|
|
|
// Tests that Property(&Foo::property, ...) works when the argument is |
|
// passed by value. |
|
TEST(PropertyTest, WorksForByValueArgument) { |
|
Matcher<AClass> m = Property(&AClass::s, StartsWith("hi")); |
|
|
|
AClass a; |
|
a.set_s("hill"); |
|
EXPECT_TRUE(m.Matches(a)); |
|
|
|
a.set_s("hole"); |
|
EXPECT_FALSE(m.Matches(a)); |
|
} |
|
|
|
// Tests that Property(&Foo::property, ...) works when the argument's |
|
// type is a sub-type of Foo. |
|
TEST(PropertyTest, WorksForArgumentOfSubType) { |
|
// The matcher expects a DerivedClass, but inside the Property() we |
|
// say AClass. |
|
Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0)); |
|
|
|
DerivedClass d; |
|
d.set_n(1); |
|
EXPECT_TRUE(m.Matches(d)); |
|
|
|
d.set_n(-1); |
|
EXPECT_FALSE(m.Matches(d)); |
|
} |
|
|
|
// Tests that Property(&Foo::property, m) works when property()'s type |
|
// and m's argument type are compatible but different. |
|
TEST(PropertyTest, WorksForCompatibleMatcherType) { |
|
// n() returns an int but the inner matcher expects a signed char. |
|
Matcher<const AClass&> m = Property(&AClass::n, |
|
Matcher<signed char>(Ge(0))); |
|
|
|
Matcher<const AClass&> m_with_name = |
|
Property("n", &AClass::n, Matcher<signed char>(Ge(0))); |
|
|
|
AClass a; |
|
EXPECT_TRUE(m.Matches(a)); |
|
EXPECT_TRUE(m_with_name.Matches(a)); |
|
a.set_n(-1); |
|
EXPECT_FALSE(m.Matches(a)); |
|
EXPECT_FALSE(m_with_name.Matches(a)); |
|
} |
|
|
|
// Tests that Property() can describe itself. |
|
TEST(PropertyTest, CanDescribeSelf) { |
|
Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); |
|
|
|
EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); |
|
EXPECT_EQ("is an object whose given property isn't >= 0", |
|
DescribeNegation(m)); |
|
} |
|
|
|
TEST(PropertyTest, CanDescribeSelfWithPropertyName) { |
|
Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0)); |
|
|
|
EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); |
|
EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", |
|
DescribeNegation(m)); |
|
} |
|
|
|
// Tests that Property() can explain the match result. |
|
TEST(PropertyTest, CanExplainMatchResult) { |
|
Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); |
|
|
|
AClass a; |
|
a.set_n(1); |
|
EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a)); |
|
|
|
m = Property(&AClass::n, GreaterThan(0)); |
|
EXPECT_EQ( |
|
"whose given property is 1" + OfType("int") + ", which is 1 more than 0", |
|
Explain(m, a)); |
|
} |
|
|
|
TEST(PropertyTest, CanExplainMatchResultWithPropertyName) { |
|
Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0)); |
|
|
|
AClass a; |
|
a.set_n(1); |
|
EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int"), Explain(m, a)); |
|
|
|
m = Property("fancy_name", &AClass::n, GreaterThan(0)); |
|
EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int") + |
|
", which is 1 more than 0", |
|
Explain(m, a)); |
|
} |
|
|
|
// Tests that Property() works when the argument is a pointer to const. |
|
TEST(PropertyForPointerTest, WorksForPointerToConst) { |
|
Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); |
|
|
|
AClass a; |
|
a.set_n(1); |
|
EXPECT_TRUE(m.Matches(&a)); |
|
|
|
a.set_n(-1); |
|
EXPECT_FALSE(m.Matches(&a)); |
|
} |
|
|
|
// Tests that Property() works when the argument is a pointer to non-const. |
|
TEST(PropertyForPointerTest, WorksForPointerToNonConst) { |
|
Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi")); |
|
|
|
AClass a; |
|
a.set_s("hill"); |
|
EXPECT_TRUE(m.Matches(&a)); |
|
|
|
a.set_s("hole"); |
|
EXPECT_FALSE(m.Matches(&a)); |
|
} |
|
|
|
// Tests that Property() works when the argument is a reference to a |
|
// const pointer. |
|
TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) { |
|
Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi")); |
|
|
|
AClass a; |
|
a.set_s("hill"); |
|
EXPECT_TRUE(m.Matches(&a)); |
|
|
|
a.set_s("hole"); |
|
EXPECT_FALSE(m.Matches(&a)); |
|
} |
|
|
|
// Tests that Property() does not match the NULL pointer. |
|
TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) { |
|
Matcher<const AClass*> m = Property(&AClass::x, _); |
|
EXPECT_FALSE(m.Matches(nullptr)); |
|
} |
|
|
|
// Tests that Property(&Foo::property, ...) works when the argument's |
|
// type is a sub-type of const Foo*. |
|
TEST(PropertyForPointerTest, WorksForArgumentOfSubType) { |
|
// The matcher expects a DerivedClass, but inside the Property() we |
|
// say AClass. |
|
Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0)); |
|
|
|
DerivedClass d; |
|
d.set_n(1); |
|
EXPECT_TRUE(m.Matches(&d)); |
|
|
|
d.set_n(-1); |
|
EXPECT_FALSE(m.Matches(&d)); |
|
} |
|
|
|
// Tests that Property() can describe itself when used to match a pointer. |
|
TEST(PropertyForPointerTest, CanDescribeSelf) { |
|
Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); |
|
|
|
EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); |
|
EXPECT_EQ("is an object whose given property isn't >= 0", |
|
DescribeNegation(m)); |
|
} |
|
|
|
TEST(PropertyForPointerTest, CanDescribeSelfWithPropertyDescription) { |
|
Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0)); |
|
|
|
EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); |
|
EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", |
|
DescribeNegation(m)); |
|
} |
|
|
|
// Tests that Property() can explain the result of matching a pointer. |
|
TEST(PropertyForPointerTest, CanExplainMatchResult) { |
|
Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); |
|
|
|
AClass a; |
|
a.set_n(1); |
|
EXPECT_EQ("", Explain(m, static_cast<const AClass*>(nullptr))); |
|
EXPECT_EQ( |
|
"which points to an object whose given property is 1" + OfType("int"), |
|
Explain(m, &a)); |
|
|
|
m = Property(&AClass::n, GreaterThan(0)); |
|
EXPECT_EQ("which points to an object whose given property is 1" + |
|
OfType("int") + ", which is 1 more than 0", |
|
Explain(m, &a)); |
|
} |
|
|
|
TEST(PropertyForPointerTest, CanExplainMatchResultWithPropertyName) { |
|
Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0)); |
|
|
|
AClass a; |
|
a.set_n(1); |
|
EXPECT_EQ("", Explain(m, static_cast<const AClass*>(nullptr))); |
|
EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + |
|
OfType("int"), |
|
Explain(m, &a)); |
|
|
|
m = Property("fancy_name", &AClass::n, GreaterThan(0)); |
|
EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + |
|
OfType("int") + ", which is 1 more than 0", |
|
Explain(m, &a)); |
|
} |
|
|
|
// Tests ResultOf. |
|
|
|
// Tests that ResultOf(f, ...) compiles and works as expected when f is a |
|
// function pointer. |
|
std::string IntToStringFunction(int input) { |
|
return input == 1 ? "foo" : "bar"; |
|
} |
|
|
|
TEST(ResultOfTest, WorksForFunctionPointers) { |
|
Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(std::string("foo"))); |
|
|
|
EXPECT_TRUE(matcher.Matches(1)); |
|
EXPECT_FALSE(matcher.Matches(2)); |
|
} |
|
|
|
// Tests that ResultOf() can describe itself. |
|
TEST(ResultOfTest, CanDescribeItself) { |
|
Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo")); |
|
|
|
EXPECT_EQ("is mapped by the given callable to a value that " |
|
"is equal to \"foo\"", Describe(matcher)); |
|
EXPECT_EQ("is mapped by the given callable to a value that " |
|
"isn't equal to \"foo\"", DescribeNegation(matcher)); |
|
} |
|
|
|
// Tests that ResultOf() can explain the match result. |
|
int IntFunction(int input) { return input == 42 ? 80 : 90; } |
|
|
|
TEST(ResultOfTest, CanExplainMatchResult) { |
|
Matcher<int> matcher = ResultOf(&IntFunction, Ge(85)); |
|
EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"), |
|
Explain(matcher, 36)); |
|
|
|
matcher = ResultOf(&IntFunction, GreaterThan(85)); |
|
EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") + |
|
", which is 5 more than 85", Explain(matcher, 36)); |
|
} |
|
|
|
// Tests that ResultOf(f, ...) compiles and works as expected when f(x) |
|
// returns a non-reference. |
|
TEST(ResultOfTest, WorksForNonReferenceResults) { |
|
Matcher<int> matcher = ResultOf(&IntFunction, Eq(80)); |
|
|
|
EXPECT_TRUE(matcher.Matches(42)); |
|
EXPECT_FALSE(matcher.Matches(36)); |
|
} |
|
|
|
// Tests that ResultOf(f, ...) compiles and works as expected when f(x) |
|
// returns a reference to non-const. |
|
double& DoubleFunction(double& input) { return input; } // NOLINT |
|
|
|
Uncopyable& RefUncopyableFunction(Uncopyable& obj) { // NOLINT |
|
return obj; |
|
} |
|
|
|
TEST(ResultOfTest, WorksForReferenceToNonConstResults) { |
|
double x = 3.14; |
|
double x2 = x; |
|
Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x)); |
|
|
|
EXPECT_TRUE(matcher.Matches(x)); |
|
EXPECT_FALSE(matcher.Matches(x2)); |
|
|
|
// Test that ResultOf works with uncopyable objects |
|
Uncopyable obj(0); |
|
Uncopyable obj2(0); |
|
Matcher<Uncopyable&> matcher2 = |
|
ResultOf(&RefUncopyableFunction, Ref(obj)); |
|
|
|
EXPECT_TRUE(matcher2.Matches(obj)); |
|
EXPECT_FALSE(matcher2.Matches(obj2)); |
|
} |
|
|
|
// Tests that ResultOf(f, ...) compiles and works as expected when f(x) |
|
// returns a reference to const. |
|
const std::string& StringFunction(const std::string& input) { return input; } |
|
|
|
TEST(ResultOfTest, WorksForReferenceToConstResults) { |
|
std::string s = "foo"; |
|
std::string s2 = s; |
|
Matcher<const std::string&> matcher = ResultOf(&StringFunction, Ref(s)); |
|
|
|
EXPECT_TRUE(matcher.Matches(s)); |
|
EXPECT_FALSE(matcher.Matches(s2)); |
|
} |
|
|
|
// Tests that ResultOf(f, m) works when f(x) and m's |
|
// argument types are compatible but different. |
|
TEST(ResultOfTest, WorksForCompatibleMatcherTypes) { |
|
// IntFunction() returns int but the inner matcher expects a signed char. |
|
Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85))); |
|
|
|
EXPECT_TRUE(matcher.Matches(36)); |
|
EXPECT_FALSE(matcher.Matches(42)); |
|
} |
|
|
|
// Tests that the program aborts when ResultOf is passed |
|
// a NULL function pointer. |
|
TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) { |
|
EXPECT_DEATH_IF_SUPPORTED( |
|
ResultOf(static_cast<std::string (*)(int dummy)>(nullptr), |
|
Eq(std::string("foo"))), |
|
"NULL function pointer is passed into ResultOf\\(\\)\\."); |
|
} |
|
|
|
// Tests that ResultOf(f, ...) compiles and works as expected when f is a |
|
// function reference. |
|
TEST(ResultOfTest, WorksForFunctionReferences) { |
|
Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo")); |
|
EXPECT_TRUE(matcher.Matches(1)); |
|
EXPECT_FALSE(matcher.Matches(2)); |
|
} |
|
|
|
// Tests that ResultOf(f, ...) compiles and works as expected when f is a |
|
// function object. |
|
struct Functor { |
|
std::string operator()(int input) const { |
|
return IntToStringFunction(input); |
|
} |
|
}; |
|
|
|
TEST(ResultOfTest, WorksForFunctors) { |
|
Matcher<int> matcher = ResultOf(Functor(), Eq(std::string("foo"))); |
|
|
|
EXPECT_TRUE(matcher.Matches(1)); |
|
EXPECT_FALSE(matcher.Matches(2)); |
|
} |
|
|
|
// Tests that ResultOf(f, ...) compiles and works as expected when f is a |
|
// functor with more than one operator() defined. ResultOf() must work |
|
// for each defined operator(). |
|
struct PolymorphicFunctor { |
|
typedef int result_type; |
|
int operator()(int n) { return n; } |
|
int operator()(const char* s) { return static_cast<int>(strlen(s)); } |
|
std::string operator()(int *p) { return p ? "good ptr" : "null"; } |
|
}; |
|
|
|
TEST(ResultOfTest, WorksForPolymorphicFunctors) { |
|
Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5)); |
|
|
|
EXPECT_TRUE(matcher_int.Matches(10)); |
|
EXPECT_FALSE(matcher_int.Matches(2)); |
|
|
|
Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5)); |
|
|
|
EXPECT_TRUE(matcher_string.Matches("long string")); |
|
EXPECT_FALSE(matcher_string.Matches("shrt")); |
|
} |
|
|
|
TEST(ResultOfTest, WorksForPolymorphicFunctorsIgnoringResultType) { |
|
Matcher<int*> matcher = ResultOf(PolymorphicFunctor(), "good ptr"); |
|
|
|
int n = 0; |
|
EXPECT_TRUE(matcher.Matches(&n)); |
|
EXPECT_FALSE(matcher.Matches(nullptr)); |
|
} |
|
|
|
TEST(ResultOfTest, WorksForLambdas) { |
|
Matcher<int> matcher = ResultOf( |
|
[](int str_len) { |
|
return std::string(static_cast<size_t>(str_len), 'x'); |
|
}, |
|
"xxx"); |
|
EXPECT_TRUE(matcher.Matches(3)); |
|
EXPECT_FALSE(matcher.Matches(1)); |
|
} |
|
|
|
const int* ReferencingFunction(const int& n) { return &n; } |
|
|
|
struct ReferencingFunctor { |
|
typedef const int* result_type; |
|
result_type operator()(const int& n) { return &n; } |
|
}; |
|
|
|
TEST(ResultOfTest, WorksForReferencingCallables) { |
|
const int n = 1; |
|
const int n2 = 1; |
|
Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n)); |
|
EXPECT_TRUE(matcher2.Matches(n)); |
|
EXPECT_FALSE(matcher2.Matches(n2)); |
|
|
|
Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n)); |
|
EXPECT_TRUE(matcher3.Matches(n)); |
|
EXPECT_FALSE(matcher3.Matches(n2)); |
|
} |
|
|
|
class DivisibleByImpl { |
|
public: |
|
explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {} |
|
|
|
// For testing using ExplainMatchResultTo() with polymorphic matchers. |
|
template <typename T> |
|
bool MatchAndExplain(const T& n, MatchResultListener* listener) const { |
|
*listener << "which is " << (n % divider_) << " modulo " |
|
<< divider_; |
|
return (n % divider_) == 0; |
|
} |
|
|
|
void DescribeTo(ostream* os) const { |
|
*os << "is divisible by " << divider_; |
|
} |
|
|
|
void DescribeNegationTo(ostream* os) const { |
|
*os << "is not divisible by " << divider_; |
|
} |
|
|
|
void set_divider(int a_divider) { divider_ = a_divider; } |
|
int divider() const { return divider_; } |
|
|
|
private: |
|
int divider_; |
|
}; |
|
|
|
PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) { |
|
return MakePolymorphicMatcher(DivisibleByImpl(n)); |
|
} |
|
|
|
// Tests that when AllOf() fails, only the first failing matcher is |
|
// asked to explain why. |
|
TEST(ExplainMatchResultTest, AllOf_False_False) { |
|
const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); |
|
EXPECT_EQ("which is 1 modulo 4", Explain(m, 5)); |
|
} |
|
|
|
// Tests that when AllOf() fails, only the first failing matcher is |
|
// asked to explain why. |
|
TEST(ExplainMatchResultTest, AllOf_False_True) { |
|
const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); |
|
EXPECT_EQ("which is 2 modulo 4", Explain(m, 6)); |
|
} |
|
|
|
// Tests that when AllOf() fails, only the first failing matcher is |
|
// asked to explain why. |
|
TEST(ExplainMatchResultTest, AllOf_True_False) { |
|
const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3)); |
|
EXPECT_EQ("which is 2 modulo 3", Explain(m, 5)); |
|
} |
|
|
|
// Tests that when AllOf() succeeds, all matchers are asked to explain |
|
// why. |
|
TEST(ExplainMatchResultTest, AllOf_True_True) { |
|
const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3)); |
|
EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6)); |
|
} |
|
|
|
TEST(ExplainMatchResultTest, AllOf_True_True_2) { |
|
const Matcher<int> m = AllOf(Ge(2), Le(3)); |
|
EXPECT_EQ("", Explain(m, 2)); |
|
} |
|
|
|
TEST(ExplainmatcherResultTest, MonomorphicMatcher) { |
|
const Matcher<int> m = GreaterThan(5); |
|
EXPECT_EQ("which is 1 more than 5", Explain(m, 6)); |
|
} |
|
|
|
// The following two tests verify that values without a public copy |
|
// ctor can be used as arguments to matchers like Eq(), Ge(), and etc |
|
// with the help of ByRef(). |
|
|
|
class NotCopyable { |
|
public: |
|
explicit NotCopyable(int a_value) : value_(a_value) {} |
|
|
|
int value() const { return value_; } |
|
|
|
bool operator==(const NotCopyable& rhs) const { |
|
return value() == rhs.value(); |
|
} |
|
|
|
bool operator>=(const NotCopyable& rhs) const { |
|
return value() >= rhs.value(); |
|
} |
|
private: |
|
int value_; |
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable); |
|
}; |
|
|
|
TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) { |
|
const NotCopyable const_value1(1); |
|
const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1)); |
|
|
|
const NotCopyable n1(1), n2(2); |
|
EXPECT_TRUE(m.Matches(n1)); |
|
EXPECT_FALSE(m.Matches(n2)); |
|
} |
|
|
|
TEST(ByRefTest, AllowsNotCopyableValueInMatchers) { |
|
NotCopyable value2(2); |
|
const Matcher<NotCopyable&> m = Ge(ByRef(value2)); |
|
|
|
NotCopyable n1(1), n2(2); |
|
EXPECT_FALSE(m.Matches(n1)); |
|
EXPECT_TRUE(m.Matches(n2)); |
|
} |
|
|
|
TEST(IsEmptyTest, ImplementsIsEmpty) { |
|
vector<int> container; |
|
EXPECT_THAT(container, IsEmpty()); |
|
container.push_back(0); |
|
EXPECT_THAT(container, Not(IsEmpty())); |
|
container.push_back(1); |
|
EXPECT_THAT(container, Not(IsEmpty())); |
|
} |
|
|
|
TEST(IsEmptyTest, WorksWithString) { |
|
std::string text; |
|
EXPECT_THAT(text, IsEmpty()); |
|
text = "foo"; |
|
EXPECT_THAT(text, Not(IsEmpty())); |
|
text = std::string("\0", 1); |
|
EXPECT_THAT(text, Not(IsEmpty())); |
|
} |
|
|
|
TEST(IsEmptyTest, CanDescribeSelf) { |
|
Matcher<vector<int> > m = IsEmpty(); |
|
EXPECT_EQ("is empty", Describe(m)); |
|
EXPECT_EQ("isn't empty", DescribeNegation(m)); |
|
} |
|
|
|
TEST(IsEmptyTest, ExplainsResult) { |
|
Matcher<vector<int> > m = IsEmpty(); |
|
vector<int> container; |
|
EXPECT_EQ("", Explain(m, container)); |
|
container.push_back(0); |
|
EXPECT_EQ("whose size is 1", Explain(m, container)); |
|
} |
|
|
|
TEST(IsEmptyTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(IsEmpty())); |
|
helper.Call({}); |
|
} |
|
|
|
TEST(IsTrueTest, IsTrueIsFalse) { |
|
EXPECT_THAT(true, IsTrue()); |
|
EXPECT_THAT(false, IsFalse()); |
|
EXPECT_THAT(true, Not(IsFalse())); |
|
EXPECT_THAT(false, Not(IsTrue())); |
|
EXPECT_THAT(0, Not(IsTrue())); |
|
EXPECT_THAT(0, IsFalse()); |
|
EXPECT_THAT(nullptr, Not(IsTrue())); |
|
EXPECT_THAT(nullptr, IsFalse()); |
|
EXPECT_THAT(-1, IsTrue()); |
|
EXPECT_THAT(-1, Not(IsFalse())); |
|
EXPECT_THAT(1, IsTrue()); |
|
EXPECT_THAT(1, Not(IsFalse())); |
|
EXPECT_THAT(2, IsTrue()); |
|
EXPECT_THAT(2, Not(IsFalse())); |
|
int a = 42; |
|
EXPECT_THAT(a, IsTrue()); |
|
EXPECT_THAT(a, Not(IsFalse())); |
|
EXPECT_THAT(&a, IsTrue()); |
|
EXPECT_THAT(&a, Not(IsFalse())); |
|
EXPECT_THAT(false, Not(IsTrue())); |
|
EXPECT_THAT(true, Not(IsFalse())); |
|
EXPECT_THAT(std::true_type(), IsTrue()); |
|
EXPECT_THAT(std::true_type(), Not(IsFalse())); |
|
EXPECT_THAT(std::false_type(), IsFalse()); |
|
EXPECT_THAT(std::false_type(), Not(IsTrue())); |
|
EXPECT_THAT(nullptr, Not(IsTrue())); |
|
EXPECT_THAT(nullptr, IsFalse()); |
|
std::unique_ptr<int> null_unique; |
|
std::unique_ptr<int> nonnull_unique(new int(0)); |
|
EXPECT_THAT(null_unique, Not(IsTrue())); |
|
EXPECT_THAT(null_unique, IsFalse()); |
|
EXPECT_THAT(nonnull_unique, IsTrue()); |
|
EXPECT_THAT(nonnull_unique, Not(IsFalse())); |
|
} |
|
|
|
TEST(SizeIsTest, ImplementsSizeIs) { |
|
vector<int> container; |
|
EXPECT_THAT(container, SizeIs(0)); |
|
EXPECT_THAT(container, Not(SizeIs(1))); |
|
container.push_back(0); |
|
EXPECT_THAT(container, Not(SizeIs(0))); |
|
EXPECT_THAT(container, SizeIs(1)); |
|
container.push_back(0); |
|
EXPECT_THAT(container, Not(SizeIs(0))); |
|
EXPECT_THAT(container, SizeIs(2)); |
|
} |
|
|
|
TEST(SizeIsTest, WorksWithMap) { |
|
map<std::string, int> container; |
|
EXPECT_THAT(container, SizeIs(0)); |
|
EXPECT_THAT(container, Not(SizeIs(1))); |
|
container.insert(make_pair("foo", 1)); |
|
EXPECT_THAT(container, Not(SizeIs(0))); |
|
EXPECT_THAT(container, SizeIs(1)); |
|
container.insert(make_pair("bar", 2)); |
|
EXPECT_THAT(container, Not(SizeIs(0))); |
|
EXPECT_THAT(container, SizeIs(2)); |
|
} |
|
|
|
TEST(SizeIsTest, WorksWithReferences) { |
|
vector<int> container; |
|
Matcher<const vector<int>&> m = SizeIs(1); |
|
EXPECT_THAT(container, Not(m)); |
|
container.push_back(0); |
|
EXPECT_THAT(container, m); |
|
} |
|
|
|
TEST(SizeIsTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(SizeIs(3))); |
|
helper.Call(MakeUniquePtrs({1, 2, 3})); |
|
} |
|
|
|
// SizeIs should work for any type that provides a size() member function. |
|
// For example, a size_type member type should not need to be provided. |
|
struct MinimalistCustomType { |
|
int size() const { return 1; } |
|
}; |
|
TEST(SizeIsTest, WorksWithMinimalistCustomType) { |
|
MinimalistCustomType container; |
|
EXPECT_THAT(container, SizeIs(1)); |
|
EXPECT_THAT(container, Not(SizeIs(0))); |
|
} |
|
|
|
TEST(SizeIsTest, CanDescribeSelf) { |
|
Matcher<vector<int> > m = SizeIs(2); |
|
EXPECT_EQ("size is equal to 2", Describe(m)); |
|
EXPECT_EQ("size isn't equal to 2", DescribeNegation(m)); |
|
} |
|
|
|
TEST(SizeIsTest, ExplainsResult) { |
|
Matcher<vector<int> > m1 = SizeIs(2); |
|
Matcher<vector<int> > m2 = SizeIs(Lt(2u)); |
|
Matcher<vector<int> > m3 = SizeIs(AnyOf(0, 3)); |
|
Matcher<vector<int> > m4 = SizeIs(GreaterThan(1)); |
|
vector<int> container; |
|
EXPECT_EQ("whose size 0 doesn't match", Explain(m1, container)); |
|
EXPECT_EQ("whose size 0 matches", Explain(m2, container)); |
|
EXPECT_EQ("whose size 0 matches", Explain(m3, container)); |
|
EXPECT_EQ("whose size 0 doesn't match, which is 1 less than 1", |
|
Explain(m4, container)); |
|
container.push_back(0); |
|
container.push_back(0); |
|
EXPECT_EQ("whose size 2 matches", Explain(m1, container)); |
|
EXPECT_EQ("whose size 2 doesn't match", Explain(m2, container)); |
|
EXPECT_EQ("whose size 2 doesn't match", Explain(m3, container)); |
|
EXPECT_EQ("whose size 2 matches, which is 1 more than 1", |
|
Explain(m4, container)); |
|
} |
|
|
|
#if GTEST_HAS_TYPED_TEST |
|
// Tests ContainerEq with different container types, and |
|
// different element types. |
|
|
|
template <typename T> |
|
class ContainerEqTest : public testing::Test {}; |
|
|
|
typedef testing::Types< |
|
set<int>, |
|
vector<size_t>, |
|
multiset<size_t>, |
|
list<int> > |
|
ContainerEqTestTypes; |
|
|
|
TYPED_TEST_SUITE(ContainerEqTest, ContainerEqTestTypes); |
|
|
|
// Tests that the filled container is equal to itself. |
|
TYPED_TEST(ContainerEqTest, EqualsSelf) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
TypeParam my_set(vals, vals + 6); |
|
const Matcher<TypeParam> m = ContainerEq(my_set); |
|
EXPECT_TRUE(m.Matches(my_set)); |
|
EXPECT_EQ("", Explain(m, my_set)); |
|
} |
|
|
|
// Tests that missing values are reported. |
|
TYPED_TEST(ContainerEqTest, ValueMissing) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {2, 1, 8, 5}; |
|
TypeParam my_set(vals, vals + 6); |
|
TypeParam test_set(test_vals, test_vals + 4); |
|
const Matcher<TypeParam> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which doesn't have these expected elements: 3", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests that added values are reported. |
|
TYPED_TEST(ContainerEqTest, ValueAdded) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 5, 8, 46}; |
|
TypeParam my_set(vals, vals + 6); |
|
TypeParam test_set(test_vals, test_vals + 6); |
|
const Matcher<const TypeParam&> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set)); |
|
} |
|
|
|
// Tests that added and missing values are reported together. |
|
TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 8, 46}; |
|
TypeParam my_set(vals, vals + 6); |
|
TypeParam test_set(test_vals, test_vals + 5); |
|
const Matcher<TypeParam> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which has these unexpected elements: 46,\n" |
|
"and doesn't have these expected elements: 5", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests duplicated value -- expect no explanation. |
|
TYPED_TEST(ContainerEqTest, DuplicateDifference) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 5, 8}; |
|
TypeParam my_set(vals, vals + 6); |
|
TypeParam test_set(test_vals, test_vals + 5); |
|
const Matcher<const TypeParam&> m = ContainerEq(my_set); |
|
// Depending on the container, match may be true or false |
|
// But in any case there should be no explanation. |
|
EXPECT_EQ("", Explain(m, test_set)); |
|
} |
|
#endif // GTEST_HAS_TYPED_TEST |
|
|
|
// Tests that multiple missing values are reported. |
|
// Using just vector here, so order is predictable. |
|
TEST(ContainerEqExtraTest, MultipleValuesMissing) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {2, 1, 5}; |
|
vector<int> my_set(vals, vals + 6); |
|
vector<int> test_set(test_vals, test_vals + 3); |
|
const Matcher<vector<int> > m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which doesn't have these expected elements: 3, 8", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests that added values are reported. |
|
// Using just vector here, so order is predictable. |
|
TEST(ContainerEqExtraTest, MultipleValuesAdded) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46}; |
|
list<size_t> my_set(vals, vals + 6); |
|
list<size_t> test_set(test_vals, test_vals + 7); |
|
const Matcher<const list<size_t>&> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which has these unexpected elements: 92, 46", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests that added and missing values are reported together. |
|
TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 92, 46}; |
|
list<size_t> my_set(vals, vals + 6); |
|
list<size_t> test_set(test_vals, test_vals + 5); |
|
const Matcher<const list<size_t> > m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which has these unexpected elements: 92, 46,\n" |
|
"and doesn't have these expected elements: 5, 8", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests to see that duplicate elements are detected, |
|
// but (as above) not reported in the explanation. |
|
TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 5, 8}; |
|
vector<int> my_set(vals, vals + 6); |
|
vector<int> test_set(test_vals, test_vals + 5); |
|
const Matcher<vector<int> > m = ContainerEq(my_set); |
|
EXPECT_TRUE(m.Matches(my_set)); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
// There is nothing to report when both sets contain all the same values. |
|
EXPECT_EQ("", Explain(m, test_set)); |
|
} |
|
|
|
// Tests that ContainerEq works for non-trivial associative containers, |
|
// like maps. |
|
TEST(ContainerEqExtraTest, WorksForMaps) { |
|
map<int, std::string> my_map; |
|
my_map[0] = "a"; |
|
my_map[1] = "b"; |
|
|
|
map<int, std::string> test_map; |
|
test_map[0] = "aa"; |
|
test_map[1] = "b"; |
|
|
|
const Matcher<const map<int, std::string>&> m = ContainerEq(my_map); |
|
EXPECT_TRUE(m.Matches(my_map)); |
|
EXPECT_FALSE(m.Matches(test_map)); |
|
|
|
EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n" |
|
"and doesn't have these expected elements: (0, \"a\")", |
|
Explain(m, test_map)); |
|
} |
|
|
|
TEST(ContainerEqExtraTest, WorksForNativeArray) { |
|
int a1[] = {1, 2, 3}; |
|
int a2[] = {1, 2, 3}; |
|
int b[] = {1, 2, 4}; |
|
|
|
EXPECT_THAT(a1, ContainerEq(a2)); |
|
EXPECT_THAT(a1, Not(ContainerEq(b))); |
|
} |
|
|
|
TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) { |
|
const char a1[][3] = {"hi", "lo"}; |
|
const char a2[][3] = {"hi", "lo"}; |
|
const char b[][3] = {"lo", "hi"}; |
|
|
|
// Tests using ContainerEq() in the first dimension. |
|
EXPECT_THAT(a1, ContainerEq(a2)); |
|
EXPECT_THAT(a1, Not(ContainerEq(b))); |
|
|
|
// Tests using ContainerEq() in the second dimension. |
|
EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1]))); |
|
EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1]))); |
|
} |
|
|
|
TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) { |
|
const int a1[] = {1, 2, 3}; |
|
const int a2[] = {1, 2, 3}; |
|
const int b[] = {1, 2, 3, 4}; |
|
|
|
const int* const p1 = a1; |
|
EXPECT_THAT(std::make_tuple(p1, 3), ContainerEq(a2)); |
|
EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(b))); |
|
|
|
const int c[] = {1, 3, 2}; |
|
EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(c))); |
|
} |
|
|
|
TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) { |
|
std::string a1[][3] = { |
|
{"hi", "hello", "ciao"}, |
|
{"bye", "see you", "ciao"} |
|
}; |
|
|
|
std::string a2[][3] = { |
|
{"hi", "hello", "ciao"}, |
|
{"bye", "see you", "ciao"} |
|
}; |
|
|
|
const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2); |
|
EXPECT_THAT(a1, m); |
|
|
|
a2[0][0] = "ha"; |
|
EXPECT_THAT(a1, m); |
|
} |
|
|
|
TEST(WhenSortedByTest, WorksForEmptyContainer) { |
|
const vector<int> numbers; |
|
EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre())); |
|
EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1)))); |
|
} |
|
|
|
TEST(WhenSortedByTest, WorksForNonEmptyContainer) { |
|
vector<unsigned> numbers; |
|
numbers.push_back(3); |
|
numbers.push_back(1); |
|
numbers.push_back(2); |
|
numbers.push_back(2); |
|
EXPECT_THAT(numbers, WhenSortedBy(greater<unsigned>(), |
|
ElementsAre(3, 2, 2, 1))); |
|
EXPECT_THAT(numbers, Not(WhenSortedBy(greater<unsigned>(), |
|
ElementsAre(1, 2, 2, 3)))); |
|
} |
|
|
|
TEST(WhenSortedByTest, WorksForNonVectorContainer) { |
|
list<std::string> words; |
|
words.push_back("say"); |
|
words.push_back("hello"); |
|
words.push_back("world"); |
|
EXPECT_THAT(words, WhenSortedBy(less<std::string>(), |
|
ElementsAre("hello", "say", "world"))); |
|
EXPECT_THAT(words, Not(WhenSortedBy(less<std::string>(), |
|
ElementsAre("say", "hello", "world")))); |
|
} |
|
|
|
TEST(WhenSortedByTest, WorksForNativeArray) { |
|
const int numbers[] = {1, 3, 2, 4}; |
|
const int sorted_numbers[] = {1, 2, 3, 4}; |
|
EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre(1, 2, 3, 4))); |
|
EXPECT_THAT(numbers, WhenSortedBy(less<int>(), |
|
ElementsAreArray(sorted_numbers))); |
|
EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1, 3, 2, 4)))); |
|
} |
|
|
|
TEST(WhenSortedByTest, CanDescribeSelf) { |
|
const Matcher<vector<int> > m = WhenSortedBy(less<int>(), ElementsAre(1, 2)); |
|
EXPECT_EQ("(when sorted) has 2 elements where\n" |
|
"element #0 is equal to 1,\n" |
|
"element #1 is equal to 2", |
|
Describe(m)); |
|
EXPECT_EQ("(when sorted) doesn't have 2 elements, or\n" |
|
"element #0 isn't equal to 1, or\n" |
|
"element #1 isn't equal to 2", |
|
DescribeNegation(m)); |
|
} |
|
|
|
TEST(WhenSortedByTest, ExplainsMatchResult) { |
|
const int a[] = {2, 1}; |
|
EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match", |
|
Explain(WhenSortedBy(less<int>(), ElementsAre(2, 3)), a)); |
|
EXPECT_EQ("which is { 1, 2 } when sorted", |
|
Explain(WhenSortedBy(less<int>(), ElementsAre(1, 2)), a)); |
|
} |
|
|
|
// WhenSorted() is a simple wrapper on WhenSortedBy(). Hence we don't |
|
// need to test it as exhaustively as we test the latter. |
|
|
|
TEST(WhenSortedTest, WorksForEmptyContainer) { |
|
const vector<int> numbers; |
|
EXPECT_THAT(numbers, WhenSorted(ElementsAre())); |
|
EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1)))); |
|
} |
|
|
|
TEST(WhenSortedTest, WorksForNonEmptyContainer) { |
|
list<std::string> words; |
|
words.push_back("3"); |
|
words.push_back("1"); |
|
words.push_back("2"); |
|
words.push_back("2"); |
|
EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3"))); |
|
EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2")))); |
|
} |
|
|
|
TEST(WhenSortedTest, WorksForMapTypes) { |
|
map<std::string, int> word_counts; |
|
word_counts["and"] = 1; |
|
word_counts["the"] = 1; |
|
word_counts["buffalo"] = 2; |
|
EXPECT_THAT(word_counts, |
|
WhenSorted(ElementsAre(Pair("and", 1), Pair("buffalo", 2), |
|
Pair("the", 1)))); |
|
EXPECT_THAT(word_counts, |
|
Not(WhenSorted(ElementsAre(Pair("and", 1), Pair("the", 1), |
|
Pair("buffalo", 2))))); |
|
} |
|
|
|
TEST(WhenSortedTest, WorksForMultiMapTypes) { |
|
multimap<int, int> ifib; |
|
ifib.insert(make_pair(8, 6)); |
|
ifib.insert(make_pair(2, 3)); |
|
ifib.insert(make_pair(1, 1)); |
|
ifib.insert(make_pair(3, 4)); |
|
ifib.insert(make_pair(1, 2)); |
|
ifib.insert(make_pair(5, 5)); |
|
EXPECT_THAT(ifib, WhenSorted(ElementsAre(Pair(1, 1), |
|
Pair(1, 2), |
|
Pair(2, 3), |
|
Pair(3, 4), |
|
Pair(5, 5), |
|
Pair(8, 6)))); |
|
EXPECT_THAT(ifib, Not(WhenSorted(ElementsAre(Pair(8, 6), |
|
Pair(2, 3), |
|
Pair(1, 1), |
|
Pair(3, 4), |
|
Pair(1, 2), |
|
Pair(5, 5))))); |
|
} |
|
|
|
TEST(WhenSortedTest, WorksForPolymorphicMatcher) { |
|
std::deque<int> d; |
|
d.push_back(2); |
|
d.push_back(1); |
|
EXPECT_THAT(d, WhenSorted(ElementsAre(1, 2))); |
|
EXPECT_THAT(d, Not(WhenSorted(ElementsAre(2, 1)))); |
|
} |
|
|
|
TEST(WhenSortedTest, WorksForVectorConstRefMatcher) { |
|
std::deque<int> d; |
|
d.push_back(2); |
|
d.push_back(1); |
|
Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2); |
|
EXPECT_THAT(d, WhenSorted(vector_match)); |
|
Matcher<const std::vector<int>&> not_vector_match = ElementsAre(2, 1); |
|
EXPECT_THAT(d, Not(WhenSorted(not_vector_match))); |
|
} |
|
|
|
// Deliberately bare pseudo-container. |
|
// Offers only begin() and end() accessors, yielding InputIterator. |
|
template <typename T> |
|
class Streamlike { |
|
private: |
|
class ConstIter; |
|
public: |
|
typedef ConstIter const_iterator; |
|
typedef T value_type; |
|
|
|
template <typename InIter> |
|
Streamlike(InIter first, InIter last) : remainder_(first, last) {} |
|
|
|
const_iterator begin() const { |
|
return const_iterator(this, remainder_.begin()); |
|
} |
|
const_iterator end() const { |
|
return const_iterator(this, remainder_.end()); |
|
} |
|
|
|
private: |
|
class ConstIter : public std::iterator<std::input_iterator_tag, |
|
value_type, |
|
ptrdiff_t, |
|
const value_type*, |
|
const value_type&> { |
|
public: |
|
ConstIter(const Streamlike* s, |
|
typename std::list<value_type>::iterator pos) |
|
: s_(s), pos_(pos) {} |
|
|
|
const value_type& operator*() const { return *pos_; } |
|
const value_type* operator->() const { return &*pos_; } |
|
ConstIter& operator++() { |
|
s_->remainder_.erase(pos_++); |
|
return *this; |
|
} |
|
|
|
// *iter++ is required to work (see std::istreambuf_iterator). |
|
// (void)iter++ is also required to work. |
|
class PostIncrProxy { |
|
public: |
|
explicit PostIncrProxy(const value_type& value) : value_(value) {} |
|
value_type operator*() const { return value_; } |
|
private: |
|
value_type value_; |
|
}; |
|
PostIncrProxy operator++(int) { |
|
PostIncrProxy proxy(**this); |
|
++(*this); |
|
return proxy; |
|
} |
|
|
|
friend bool operator==(const ConstIter& a, const ConstIter& b) { |
|
return a.s_ == b.s_ && a.pos_ == b.pos_; |
|
} |
|
friend bool operator!=(const ConstIter& a, const ConstIter& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
const Streamlike* s_; |
|
typename std::list<value_type>::iterator pos_; |
|
}; |
|
|
|
friend std::ostream& operator<<(std::ostream& os, const Streamlike& s) { |
|
os << "["; |
|
typedef typename std::list<value_type>::const_iterator Iter; |
|
const char* sep = ""; |
|
for (Iter it = s.remainder_.begin(); it != s.remainder_.end(); ++it) { |
|
os << sep << *it; |
|
sep = ","; |
|
} |
|
os << "]"; |
|
return os; |
|
} |
|
|
|
mutable std::list<value_type> remainder_; // modified by iteration |
|
}; |
|
|
|
TEST(StreamlikeTest, Iteration) { |
|
const int a[5] = {2, 1, 4, 5, 3}; |
|
Streamlike<int> s(a, a + 5); |
|
Streamlike<int>::const_iterator it = s.begin(); |
|
const int* ip = a; |
|
while (it != s.end()) { |
|
SCOPED_TRACE(ip - a); |
|
EXPECT_EQ(*ip++, *it++); |
|
} |
|
} |
|
|
|
TEST(BeginEndDistanceIsTest, WorksWithForwardList) { |
|
std::forward_list<int> container; |
|
EXPECT_THAT(container, BeginEndDistanceIs(0)); |
|
EXPECT_THAT(container, Not(BeginEndDistanceIs(1))); |
|
container.push_front(0); |
|
EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); |
|
EXPECT_THAT(container, BeginEndDistanceIs(1)); |
|
container.push_front(0); |
|
EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); |
|
EXPECT_THAT(container, BeginEndDistanceIs(2)); |
|
} |
|
|
|
TEST(BeginEndDistanceIsTest, WorksWithNonStdList) { |
|
const int a[5] = {1, 2, 3, 4, 5}; |
|
Streamlike<int> s(a, a + 5); |
|
EXPECT_THAT(s, BeginEndDistanceIs(5)); |
|
} |
|
|
|
TEST(BeginEndDistanceIsTest, CanDescribeSelf) { |
|
Matcher<vector<int> > m = BeginEndDistanceIs(2); |
|
EXPECT_EQ("distance between begin() and end() is equal to 2", Describe(m)); |
|
EXPECT_EQ("distance between begin() and end() isn't equal to 2", |
|
DescribeNegation(m)); |
|
} |
|
|
|
TEST(BeginEndDistanceIsTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(BeginEndDistanceIs(2))); |
|
helper.Call(MakeUniquePtrs({1, 2})); |
|
} |
|
|
|
TEST(BeginEndDistanceIsTest, ExplainsResult) { |
|
Matcher<vector<int> > m1 = BeginEndDistanceIs(2); |
|
Matcher<vector<int> > m2 = BeginEndDistanceIs(Lt(2)); |
|
Matcher<vector<int> > m3 = BeginEndDistanceIs(AnyOf(0, 3)); |
|
Matcher<vector<int> > m4 = BeginEndDistanceIs(GreaterThan(1)); |
|
vector<int> container; |
|
EXPECT_EQ("whose distance between begin() and end() 0 doesn't match", |
|
Explain(m1, container)); |
|
EXPECT_EQ("whose distance between begin() and end() 0 matches", |
|
Explain(m2, container)); |
|
EXPECT_EQ("whose distance between begin() and end() 0 matches", |
|
Explain(m3, container)); |
|
EXPECT_EQ( |
|
"whose distance between begin() and end() 0 doesn't match, which is 1 " |
|
"less than 1", |
|
Explain(m4, container)); |
|
container.push_back(0); |
|
container.push_back(0); |
|
EXPECT_EQ("whose distance between begin() and end() 2 matches", |
|
Explain(m1, container)); |
|
EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", |
|
Explain(m2, container)); |
|
EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", |
|
Explain(m3, container)); |
|
EXPECT_EQ( |
|
"whose distance between begin() and end() 2 matches, which is 1 more " |
|
"than 1", |
|
Explain(m4, container)); |
|
} |
|
|
|
TEST(WhenSortedTest, WorksForStreamlike) { |
|
// Streamlike 'container' provides only minimal iterator support. |
|
// Its iterators are tagged with input_iterator_tag. |
|
const int a[5] = {2, 1, 4, 5, 3}; |
|
Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
EXPECT_THAT(s, WhenSorted(ElementsAre(1, 2, 3, 4, 5))); |
|
EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); |
|
} |
|
|
|
TEST(WhenSortedTest, WorksForVectorConstRefMatcherOnStreamlike) { |
|
const int a[] = {2, 1, 4, 5, 3}; |
|
Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2, 3, 4, 5); |
|
EXPECT_THAT(s, WhenSorted(vector_match)); |
|
EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); |
|
} |
|
|
|
TEST(IsSupersetOfTest, WorksForNativeArray) { |
|
const int subset[] = {1, 4}; |
|
const int superset[] = {1, 2, 4}; |
|
const int disjoint[] = {1, 0, 3}; |
|
EXPECT_THAT(subset, IsSupersetOf(subset)); |
|
EXPECT_THAT(subset, Not(IsSupersetOf(superset))); |
|
EXPECT_THAT(superset, IsSupersetOf(subset)); |
|
EXPECT_THAT(subset, Not(IsSupersetOf(disjoint))); |
|
EXPECT_THAT(disjoint, Not(IsSupersetOf(subset))); |
|
} |
|
|
|
TEST(IsSupersetOfTest, WorksWithDuplicates) { |
|
const int not_enough[] = {1, 2}; |
|
const int enough[] = {1, 1, 2}; |
|
const int expected[] = {1, 1}; |
|
EXPECT_THAT(not_enough, Not(IsSupersetOf(expected))); |
|
EXPECT_THAT(enough, IsSupersetOf(expected)); |
|
} |
|
|
|
TEST(IsSupersetOfTest, WorksForEmpty) { |
|
vector<int> numbers; |
|
vector<int> expected; |
|
EXPECT_THAT(numbers, IsSupersetOf(expected)); |
|
expected.push_back(1); |
|
EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); |
|
expected.clear(); |
|
numbers.push_back(1); |
|
numbers.push_back(2); |
|
EXPECT_THAT(numbers, IsSupersetOf(expected)); |
|
expected.push_back(1); |
|
EXPECT_THAT(numbers, IsSupersetOf(expected)); |
|
expected.push_back(2); |
|
EXPECT_THAT(numbers, IsSupersetOf(expected)); |
|
expected.push_back(3); |
|
EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); |
|
} |
|
|
|
TEST(IsSupersetOfTest, WorksForStreamlike) { |
|
const int a[5] = {1, 2, 3, 4, 5}; |
|
Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
|
|
vector<int> expected; |
|
expected.push_back(1); |
|
expected.push_back(2); |
|
expected.push_back(5); |
|
EXPECT_THAT(s, IsSupersetOf(expected)); |
|
|
|
expected.push_back(0); |
|
EXPECT_THAT(s, Not(IsSupersetOf(expected))); |
|
} |
|
|
|
TEST(IsSupersetOfTest, TakesStlContainer) { |
|
const int actual[] = {3, 1, 2}; |
|
|
|
::std::list<int> expected; |
|
expected.push_back(1); |
|
expected.push_back(3); |
|
EXPECT_THAT(actual, IsSupersetOf(expected)); |
|
|
|
expected.push_back(4); |
|
EXPECT_THAT(actual, Not(IsSupersetOf(expected))); |
|
} |
|
|
|
TEST(IsSupersetOfTest, Describe) { |
|
typedef std::vector<int> IntVec; |
|
IntVec expected; |
|
expected.push_back(111); |
|
expected.push_back(222); |
|
expected.push_back(333); |
|
EXPECT_THAT( |
|
Describe<IntVec>(IsSupersetOf(expected)), |
|
Eq("a surjection from elements to requirements exists such that:\n" |
|
" - an element is equal to 111\n" |
|
" - an element is equal to 222\n" |
|
" - an element is equal to 333")); |
|
} |
|
|
|
TEST(IsSupersetOfTest, DescribeNegation) { |
|
typedef std::vector<int> IntVec; |
|
IntVec expected; |
|
expected.push_back(111); |
|
expected.push_back(222); |
|
expected.push_back(333); |
|
EXPECT_THAT( |
|
DescribeNegation<IntVec>(IsSupersetOf(expected)), |
|
Eq("no surjection from elements to requirements exists such that:\n" |
|
" - an element is equal to 111\n" |
|
" - an element is equal to 222\n" |
|
" - an element is equal to 333")); |
|
} |
|
|
|
TEST(IsSupersetOfTest, MatchAndExplain) { |
|
std::vector<int> v; |
|
v.push_back(2); |
|
v.push_back(3); |
|
std::vector<int> expected; |
|
expected.push_back(1); |
|
expected.push_back(2); |
|
StringMatchResultListener listener; |
|
ASSERT_FALSE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) |
|
<< listener.str(); |
|
EXPECT_THAT(listener.str(), |
|
Eq("where the following matchers don't match any elements:\n" |
|
"matcher #0: is equal to 1")); |
|
|
|
v.push_back(1); |
|
listener.Clear(); |
|
ASSERT_TRUE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) |
|
<< listener.str(); |
|
EXPECT_THAT(listener.str(), Eq("where:\n" |
|
" - element #0 is matched by matcher #1,\n" |
|
" - element #2 is matched by matcher #0")); |
|
} |
|
|
|
TEST(IsSupersetOfTest, WorksForRhsInitializerList) { |
|
const int numbers[] = {1, 3, 6, 2, 4, 5}; |
|
EXPECT_THAT(numbers, IsSupersetOf({1, 2})); |
|
EXPECT_THAT(numbers, Not(IsSupersetOf({3, 0}))); |
|
} |
|
|
|
TEST(IsSupersetOfTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(IsSupersetOf({Pointee(1)}))); |
|
helper.Call(MakeUniquePtrs({1, 2})); |
|
EXPECT_CALL(helper, Call(Not(IsSupersetOf({Pointee(1), Pointee(2)})))); |
|
helper.Call(MakeUniquePtrs({2})); |
|
} |
|
|
|
TEST(IsSubsetOfTest, WorksForNativeArray) { |
|
const int subset[] = {1, 4}; |
|
const int superset[] = {1, 2, 4}; |
|
const int disjoint[] = {1, 0, 3}; |
|
EXPECT_THAT(subset, IsSubsetOf(subset)); |
|
EXPECT_THAT(subset, IsSubsetOf(superset)); |
|
EXPECT_THAT(superset, Not(IsSubsetOf(subset))); |
|
EXPECT_THAT(subset, Not(IsSubsetOf(disjoint))); |
|
EXPECT_THAT(disjoint, Not(IsSubsetOf(subset))); |
|
} |
|
|
|
TEST(IsSubsetOfTest, WorksWithDuplicates) { |
|
const int not_enough[] = {1, 2}; |
|
const int enough[] = {1, 1, 2}; |
|
const int actual[] = {1, 1}; |
|
EXPECT_THAT(actual, Not(IsSubsetOf(not_enough))); |
|
EXPECT_THAT(actual, IsSubsetOf(enough)); |
|
} |
|
|
|
TEST(IsSubsetOfTest, WorksForEmpty) { |
|
vector<int> numbers; |
|
vector<int> expected; |
|
EXPECT_THAT(numbers, IsSubsetOf(expected)); |
|
expected.push_back(1); |
|
EXPECT_THAT(numbers, IsSubsetOf(expected)); |
|
expected.clear(); |
|
numbers.push_back(1); |
|
numbers.push_back(2); |
|
EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); |
|
expected.push_back(1); |
|
EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); |
|
expected.push_back(2); |
|
EXPECT_THAT(numbers, IsSubsetOf(expected)); |
|
expected.push_back(3); |
|
EXPECT_THAT(numbers, IsSubsetOf(expected)); |
|
} |
|
|
|
TEST(IsSubsetOfTest, WorksForStreamlike) { |
|
const int a[5] = {1, 2}; |
|
Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
|
|
vector<int> expected; |
|
expected.push_back(1); |
|
EXPECT_THAT(s, Not(IsSubsetOf(expected))); |
|
expected.push_back(2); |
|
expected.push_back(5); |
|
EXPECT_THAT(s, IsSubsetOf(expected)); |
|
} |
|
|
|
TEST(IsSubsetOfTest, TakesStlContainer) { |
|
const int actual[] = {3, 1, 2}; |
|
|
|
::std::list<int> expected; |
|
expected.push_back(1); |
|
expected.push_back(3); |
|
EXPECT_THAT(actual, Not(IsSubsetOf(expected))); |
|
|
|
expected.push_back(2); |
|
expected.push_back(4); |
|
EXPECT_THAT(actual, IsSubsetOf(expected)); |
|
} |
|
|
|
TEST(IsSubsetOfTest, Describe) { |
|
typedef std::vector<int> IntVec; |
|
IntVec expected; |
|
expected.push_back(111); |
|
expected.push_back(222); |
|
expected.push_back(333); |
|
|
|
EXPECT_THAT( |
|
Describe<IntVec>(IsSubsetOf(expected)), |
|
Eq("an injection from elements to requirements exists such that:\n" |
|
" - an element is equal to 111\n" |
|
" - an element is equal to 222\n" |
|
" - an element is equal to 333")); |
|
} |
|
|
|
TEST(IsSubsetOfTest, DescribeNegation) { |
|
typedef std::vector<int> IntVec; |
|
IntVec expected; |
|
expected.push_back(111); |
|
expected.push_back(222); |
|
expected.push_back(333); |
|
EXPECT_THAT( |
|
DescribeNegation<IntVec>(IsSubsetOf(expected)), |
|
Eq("no injection from elements to requirements exists such that:\n" |
|
" - an element is equal to 111\n" |
|
" - an element is equal to 222\n" |
|
" - an element is equal to 333")); |
|
} |
|
|
|
TEST(IsSubsetOfTest, MatchAndExplain) { |
|
std::vector<int> v; |
|
v.push_back(2); |
|
v.push_back(3); |
|
std::vector<int> expected; |
|
expected.push_back(1); |
|
expected.push_back(2); |
|
StringMatchResultListener listener; |
|
ASSERT_FALSE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) |
|
<< listener.str(); |
|
EXPECT_THAT(listener.str(), |
|
Eq("where the following elements don't match any matchers:\n" |
|
"element #1: 3")); |
|
|
|
expected.push_back(3); |
|
listener.Clear(); |
|
ASSERT_TRUE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) |
|
<< listener.str(); |
|
EXPECT_THAT(listener.str(), Eq("where:\n" |
|
" - element #0 is matched by matcher #1,\n" |
|
" - element #1 is matched by matcher #2")); |
|
} |
|
|
|
TEST(IsSubsetOfTest, WorksForRhsInitializerList) { |
|
const int numbers[] = {1, 2, 3}; |
|
EXPECT_THAT(numbers, IsSubsetOf({1, 2, 3, 4})); |
|
EXPECT_THAT(numbers, Not(IsSubsetOf({1, 2}))); |
|
} |
|
|
|
TEST(IsSubsetOfTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(IsSubsetOf({Pointee(1), Pointee(2)}))); |
|
helper.Call(MakeUniquePtrs({1})); |
|
EXPECT_CALL(helper, Call(Not(IsSubsetOf({Pointee(1)})))); |
|
helper.Call(MakeUniquePtrs({2})); |
|
} |
|
|
|
// Tests using ElementsAre() and ElementsAreArray() with stream-like |
|
// "containers". |
|
|
|
TEST(ElemensAreStreamTest, WorksForStreamlike) { |
|
const int a[5] = {1, 2, 3, 4, 5}; |
|
Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
EXPECT_THAT(s, ElementsAre(1, 2, 3, 4, 5)); |
|
EXPECT_THAT(s, Not(ElementsAre(2, 1, 4, 5, 3))); |
|
} |
|
|
|
TEST(ElemensAreArrayStreamTest, WorksForStreamlike) { |
|
const int a[5] = {1, 2, 3, 4, 5}; |
|
Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
|
|
vector<int> expected; |
|
expected.push_back(1); |
|
expected.push_back(2); |
|
expected.push_back(3); |
|
expected.push_back(4); |
|
expected.push_back(5); |
|
EXPECT_THAT(s, ElementsAreArray(expected)); |
|
|
|
expected[3] = 0; |
|
EXPECT_THAT(s, Not(ElementsAreArray(expected))); |
|
} |
|
|
|
TEST(ElementsAreTest, WorksWithUncopyable) { |
|
Uncopyable objs[2]; |
|
objs[0].set_value(-3); |
|
objs[1].set_value(1); |
|
EXPECT_THAT(objs, ElementsAre(UncopyableIs(-3), Truly(ValueIsPositive))); |
|
} |
|
|
|
TEST(ElementsAreTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(ElementsAre(Pointee(1), Pointee(2)))); |
|
helper.Call(MakeUniquePtrs({1, 2})); |
|
|
|
EXPECT_CALL(helper, Call(ElementsAreArray({Pointee(3), Pointee(4)}))); |
|
helper.Call(MakeUniquePtrs({3, 4})); |
|
} |
|
|
|
TEST(ElementsAreTest, TakesStlContainer) { |
|
const int actual[] = {3, 1, 2}; |
|
|
|
::std::list<int> expected; |
|
expected.push_back(3); |
|
expected.push_back(1); |
|
expected.push_back(2); |
|
EXPECT_THAT(actual, ElementsAreArray(expected)); |
|
|
|
expected.push_back(4); |
|
EXPECT_THAT(actual, Not(ElementsAreArray(expected))); |
|
} |
|
|
|
// Tests for UnorderedElementsAreArray() |
|
|
|
TEST(UnorderedElementsAreArrayTest, SucceedsWhenExpected) { |
|
const int a[] = {0, 1, 2, 3, 4}; |
|
std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
do { |
|
StringMatchResultListener listener; |
|
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(a), |
|
s, &listener)) << listener.str(); |
|
} while (std::next_permutation(s.begin(), s.end())); |
|
} |
|
|
|
TEST(UnorderedElementsAreArrayTest, VectorBool) { |
|
const bool a[] = {0, 1, 0, 1, 1}; |
|
const bool b[] = {1, 0, 1, 1, 0}; |
|
std::vector<bool> expected(a, a + GTEST_ARRAY_SIZE_(a)); |
|
std::vector<bool> actual(b, b + GTEST_ARRAY_SIZE_(b)); |
|
StringMatchResultListener listener; |
|
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(expected), |
|
actual, &listener)) << listener.str(); |
|
} |
|
|
|
TEST(UnorderedElementsAreArrayTest, WorksForStreamlike) { |
|
// Streamlike 'container' provides only minimal iterator support. |
|
// Its iterators are tagged with input_iterator_tag, and it has no |
|
// size() or empty() methods. |
|
const int a[5] = {2, 1, 4, 5, 3}; |
|
Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
|
|
::std::vector<int> expected; |
|
expected.push_back(1); |
|
expected.push_back(2); |
|
expected.push_back(3); |
|
expected.push_back(4); |
|
expected.push_back(5); |
|
EXPECT_THAT(s, UnorderedElementsAreArray(expected)); |
|
|
|
expected.push_back(6); |
|
EXPECT_THAT(s, Not(UnorderedElementsAreArray(expected))); |
|
} |
|
|
|
TEST(UnorderedElementsAreArrayTest, TakesStlContainer) { |
|
const int actual[] = {3, 1, 2}; |
|
|
|
::std::list<int> expected; |
|
expected.push_back(1); |
|
expected.push_back(2); |
|
expected.push_back(3); |
|
EXPECT_THAT(actual, UnorderedElementsAreArray(expected)); |
|
|
|
expected.push_back(4); |
|
EXPECT_THAT(actual, Not(UnorderedElementsAreArray(expected))); |
|
} |
|
|
|
|
|
TEST(UnorderedElementsAreArrayTest, TakesInitializerList) { |
|
const int a[5] = {2, 1, 4, 5, 3}; |
|
EXPECT_THAT(a, UnorderedElementsAreArray({1, 2, 3, 4, 5})); |
|
EXPECT_THAT(a, Not(UnorderedElementsAreArray({1, 2, 3, 4, 6}))); |
|
} |
|
|
|
TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfCStrings) { |
|
const std::string a[5] = {"a", "b", "c", "d", "e"}; |
|
EXPECT_THAT(a, UnorderedElementsAreArray({"a", "b", "c", "d", "e"})); |
|
EXPECT_THAT(a, Not(UnorderedElementsAreArray({"a", "b", "c", "d", "ef"}))); |
|
} |
|
|
|
TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { |
|
const int a[5] = {2, 1, 4, 5, 3}; |
|
EXPECT_THAT(a, UnorderedElementsAreArray( |
|
{Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)})); |
|
EXPECT_THAT(a, Not(UnorderedElementsAreArray( |
|
{Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)}))); |
|
} |
|
|
|
TEST(UnorderedElementsAreArrayTest, |
|
TakesInitializerListOfDifferentTypedMatchers) { |
|
const int a[5] = {2, 1, 4, 5, 3}; |
|
// The compiler cannot infer the type of the initializer list if its |
|
// elements have different types. We must explicitly specify the |
|
// unified element type in this case. |
|
EXPECT_THAT(a, UnorderedElementsAreArray<Matcher<int> >( |
|
{Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)})); |
|
EXPECT_THAT(a, Not(UnorderedElementsAreArray<Matcher<int> >( |
|
{Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)}))); |
|
} |
|
|
|
|
|
TEST(UnorderedElementsAreArrayTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, |
|
Call(UnorderedElementsAreArray({Pointee(1), Pointee(2)}))); |
|
helper.Call(MakeUniquePtrs({2, 1})); |
|
} |
|
|
|
class UnorderedElementsAreTest : public testing::Test { |
|
protected: |
|
typedef std::vector<int> IntVec; |
|
}; |
|
|
|
TEST_F(UnorderedElementsAreTest, WorksWithUncopyable) { |
|
Uncopyable objs[2]; |
|
objs[0].set_value(-3); |
|
objs[1].set_value(1); |
|
EXPECT_THAT(objs, |
|
UnorderedElementsAre(Truly(ValueIsPositive), UncopyableIs(-3))); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, SucceedsWhenExpected) { |
|
const int a[] = {1, 2, 3}; |
|
std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
do { |
|
StringMatchResultListener listener; |
|
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), |
|
s, &listener)) << listener.str(); |
|
} while (std::next_permutation(s.begin(), s.end())); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, FailsWhenAnElementMatchesNoMatcher) { |
|
const int a[] = {1, 2, 3}; |
|
std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
std::vector<Matcher<int> > mv; |
|
mv.push_back(1); |
|
mv.push_back(2); |
|
mv.push_back(2); |
|
// The element with value '3' matches nothing: fail fast. |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAreArray(mv), |
|
s, &listener)) << listener.str(); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, WorksForStreamlike) { |
|
// Streamlike 'container' provides only minimal iterator support. |
|
// Its iterators are tagged with input_iterator_tag, and it has no |
|
// size() or empty() methods. |
|
const int a[5] = {2, 1, 4, 5, 3}; |
|
Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); |
|
|
|
EXPECT_THAT(s, UnorderedElementsAre(1, 2, 3, 4, 5)); |
|
EXPECT_THAT(s, Not(UnorderedElementsAre(2, 2, 3, 4, 5))); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(UnorderedElementsAre(Pointee(1), Pointee(2)))); |
|
helper.Call(MakeUniquePtrs({2, 1})); |
|
} |
|
|
|
// One naive implementation of the matcher runs in O(N!) time, which is too |
|
// slow for many real-world inputs. This test shows that our matcher can match |
|
// 100 inputs very quickly (a few milliseconds). An O(100!) is 10^158 |
|
// iterations and obviously effectively incomputable. |
|
// [ RUN ] UnorderedElementsAreTest.Performance |
|
// [ OK ] UnorderedElementsAreTest.Performance (4 ms) |
|
TEST_F(UnorderedElementsAreTest, Performance) { |
|
std::vector<int> s; |
|
std::vector<Matcher<int> > mv; |
|
for (int i = 0; i < 100; ++i) { |
|
s.push_back(i); |
|
mv.push_back(_); |
|
} |
|
mv[50] = Eq(0); |
|
StringMatchResultListener listener; |
|
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), |
|
s, &listener)) << listener.str(); |
|
} |
|
|
|
// Another variant of 'Performance' with similar expectations. |
|
// [ RUN ] UnorderedElementsAreTest.PerformanceHalfStrict |
|
// [ OK ] UnorderedElementsAreTest.PerformanceHalfStrict (4 ms) |
|
TEST_F(UnorderedElementsAreTest, PerformanceHalfStrict) { |
|
std::vector<int> s; |
|
std::vector<Matcher<int> > mv; |
|
for (int i = 0; i < 100; ++i) { |
|
s.push_back(i); |
|
if (i & 1) { |
|
mv.push_back(_); |
|
} else { |
|
mv.push_back(i); |
|
} |
|
} |
|
StringMatchResultListener listener; |
|
EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), |
|
s, &listener)) << listener.str(); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, FailMessageCountWrong) { |
|
std::vector<int> v; |
|
v.push_back(4); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), |
|
v, &listener)) << listener.str(); |
|
EXPECT_THAT(listener.str(), Eq("which has 1 element")); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, FailMessageCountWrongZero) { |
|
std::vector<int> v; |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), |
|
v, &listener)) << listener.str(); |
|
EXPECT_THAT(listener.str(), Eq("")); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatchers) { |
|
std::vector<int> v; |
|
v.push_back(1); |
|
v.push_back(1); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), |
|
v, &listener)) << listener.str(); |
|
EXPECT_THAT( |
|
listener.str(), |
|
Eq("where the following matchers don't match any elements:\n" |
|
"matcher #1: is equal to 2")); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedElements) { |
|
std::vector<int> v; |
|
v.push_back(1); |
|
v.push_back(2); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 1), |
|
v, &listener)) << listener.str(); |
|
EXPECT_THAT( |
|
listener.str(), |
|
Eq("where the following elements don't match any matchers:\n" |
|
"element #1: 2")); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatcherAndElement) { |
|
std::vector<int> v; |
|
v.push_back(2); |
|
v.push_back(3); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), |
|
v, &listener)) << listener.str(); |
|
EXPECT_THAT( |
|
listener.str(), |
|
Eq("where" |
|
" the following matchers don't match any elements:\n" |
|
"matcher #0: is equal to 1\n" |
|
"and" |
|
" where" |
|
" the following elements don't match any matchers:\n" |
|
"element #1: 3")); |
|
} |
|
|
|
// Test helper for formatting element, matcher index pairs in expectations. |
|
static std::string EMString(int element, int matcher) { |
|
stringstream ss; |
|
ss << "(element #" << element << ", matcher #" << matcher << ")"; |
|
return ss.str(); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, FailMessageImperfectMatchOnly) { |
|
// A situation where all elements and matchers have a match |
|
// associated with them, but the max matching is not perfect. |
|
std::vector<std::string> v; |
|
v.push_back("a"); |
|
v.push_back("b"); |
|
v.push_back("c"); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(ExplainMatchResult( |
|
UnorderedElementsAre("a", "a", AnyOf("b", "c")), v, &listener)) |
|
<< listener.str(); |
|
|
|
std::string prefix = |
|
"where no permutation of the elements can satisfy all matchers, " |
|
"and the closest match is 2 of 3 matchers with the " |
|
"pairings:\n"; |
|
|
|
// We have to be a bit loose here, because there are 4 valid max matches. |
|
EXPECT_THAT( |
|
listener.str(), |
|
AnyOf(prefix + "{\n " + EMString(0, 0) + |
|
",\n " + EMString(1, 2) + "\n}", |
|
prefix + "{\n " + EMString(0, 1) + |
|
",\n " + EMString(1, 2) + "\n}", |
|
prefix + "{\n " + EMString(0, 0) + |
|
",\n " + EMString(2, 2) + "\n}", |
|
prefix + "{\n " + EMString(0, 1) + |
|
",\n " + EMString(2, 2) + "\n}")); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, Describe) { |
|
EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre()), |
|
Eq("is empty")); |
|
EXPECT_THAT( |
|
Describe<IntVec>(UnorderedElementsAre(345)), |
|
Eq("has 1 element and that element is equal to 345")); |
|
EXPECT_THAT( |
|
Describe<IntVec>(UnorderedElementsAre(111, 222, 333)), |
|
Eq("has 3 elements and there exists some permutation " |
|
"of elements such that:\n" |
|
" - element #0 is equal to 111, and\n" |
|
" - element #1 is equal to 222, and\n" |
|
" - element #2 is equal to 333")); |
|
} |
|
|
|
TEST_F(UnorderedElementsAreTest, DescribeNegation) { |
|
EXPECT_THAT(DescribeNegation<IntVec>(UnorderedElementsAre()), |
|
Eq("isn't empty")); |
|
EXPECT_THAT( |
|
DescribeNegation<IntVec>(UnorderedElementsAre(345)), |
|
Eq("doesn't have 1 element, or has 1 element that isn't equal to 345")); |
|
EXPECT_THAT( |
|
DescribeNegation<IntVec>(UnorderedElementsAre(123, 234, 345)), |
|
Eq("doesn't have 3 elements, or there exists no permutation " |
|
"of elements such that:\n" |
|
" - element #0 is equal to 123, and\n" |
|
" - element #1 is equal to 234, and\n" |
|
" - element #2 is equal to 345")); |
|
} |
|
|
|
namespace { |
|
|
|
// Used as a check on the more complex max flow method used in the |
|
// real testing::internal::FindMaxBipartiteMatching. This method is |
|
// compatible but runs in worst-case factorial time, so we only |
|
// use it in testing for small problem sizes. |
|
template <typename Graph> |
|
class BacktrackingMaxBPMState { |
|
public: |
|
// Does not take ownership of 'g'. |
|
explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) { } |
|
|
|
ElementMatcherPairs Compute() { |
|
if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) { |
|
return best_so_far_; |
|
} |
|
lhs_used_.assign(graph_->LhsSize(), kUnused); |
|
rhs_used_.assign(graph_->RhsSize(), kUnused); |
|
for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { |
|
matches_.clear(); |
|
RecurseInto(irhs); |
|
if (best_so_far_.size() == graph_->RhsSize()) |
|
break; |
|
} |
|
return best_so_far_; |
|
} |
|
|
|
private: |
|
static const size_t kUnused = static_cast<size_t>(-1); |
|
|
|
void PushMatch(size_t lhs, size_t rhs) { |
|
matches_.push_back(ElementMatcherPair(lhs, rhs)); |
|
lhs_used_[lhs] = rhs; |
|
rhs_used_[rhs] = lhs; |
|
if (matches_.size() > best_so_far_.size()) { |
|
best_so_far_ = matches_; |
|
} |
|
} |
|
|
|
void PopMatch() { |
|
const ElementMatcherPair& back = matches_.back(); |
|
lhs_used_[back.first] = kUnused; |
|
rhs_used_[back.second] = kUnused; |
|
matches_.pop_back(); |
|
} |
|
|
|
bool RecurseInto(size_t irhs) { |
|
if (rhs_used_[irhs] != kUnused) { |
|
return true; |
|
} |
|
for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { |
|
if (lhs_used_[ilhs] != kUnused) { |
|
continue; |
|
} |
|
if (!graph_->HasEdge(ilhs, irhs)) { |
|
continue; |
|
} |
|
PushMatch(ilhs, irhs); |
|
if (best_so_far_.size() == graph_->RhsSize()) { |
|
return false; |
|
} |
|
for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) { |
|
if (!RecurseInto(mi)) return false; |
|
} |
|
PopMatch(); |
|
} |
|
return true; |
|
} |
|
|
|
const Graph* graph_; // not owned |
|
std::vector<size_t> lhs_used_; |
|
std::vector<size_t> rhs_used_; |
|
ElementMatcherPairs matches_; |
|
ElementMatcherPairs best_so_far_; |
|
}; |
|
|
|
template <typename Graph> |
|
const size_t BacktrackingMaxBPMState<Graph>::kUnused; |
|
|
|
} // namespace |
|
|
|
// Implement a simple backtracking algorithm to determine if it is possible |
|
// to find one element per matcher, without reusing elements. |
|
template <typename Graph> |
|
ElementMatcherPairs |
|
FindBacktrackingMaxBPM(const Graph& g) { |
|
return BacktrackingMaxBPMState<Graph>(&g).Compute(); |
|
} |
|
|
|
class BacktrackingBPMTest : public ::testing::Test { }; |
|
|
|
// Tests the MaxBipartiteMatching algorithm with square matrices. |
|
// The single int param is the # of nodes on each of the left and right sides. |
|
class BipartiteTest : public ::testing::TestWithParam<size_t> {}; |
|
|
|
// Verify all match graphs up to some moderate number of edges. |
|
TEST_P(BipartiteTest, Exhaustive) { |
|
size_t nodes = GetParam(); |
|
MatchMatrix graph(nodes, nodes); |
|
do { |
|
ElementMatcherPairs matches = |
|
internal::FindMaxBipartiteMatching(graph); |
|
EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size()) |
|
<< "graph: " << graph.DebugString(); |
|
// Check that all elements of matches are in the graph. |
|
// Check that elements of first and second are unique. |
|
std::vector<bool> seen_element(graph.LhsSize()); |
|
std::vector<bool> seen_matcher(graph.RhsSize()); |
|
SCOPED_TRACE(PrintToString(matches)); |
|
for (size_t i = 0; i < matches.size(); ++i) { |
|
size_t ilhs = matches[i].first; |
|
size_t irhs = matches[i].second; |
|
EXPECT_TRUE(graph.HasEdge(ilhs, irhs)); |
|
EXPECT_FALSE(seen_element[ilhs]); |
|
EXPECT_FALSE(seen_matcher[irhs]); |
|
seen_element[ilhs] = true; |
|
seen_matcher[irhs] = true; |
|
} |
|
} while (graph.NextGraph()); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteTest, |
|
::testing::Range(size_t{0}, size_t{5})); |
|
|
|
// Parameterized by a pair interpreted as (LhsSize, RhsSize). |
|
class BipartiteNonSquareTest |
|
: public ::testing::TestWithParam<std::pair<size_t, size_t> > { |
|
}; |
|
|
|
TEST_F(BipartiteNonSquareTest, SimpleBacktracking) { |
|
// ....... |
|
// 0:-----\ : |
|
// 1:---\ | : |
|
// 2:---\ | : |
|
// 3:-\ | | : |
|
// :.......: |
|
// 0 1 2 |
|
MatchMatrix g(4, 3); |
|
static const size_t kEdges[][2] = {{0, 2}, {1, 1}, {2, 1}, {3, 0}}; |
|
for (size_t i = 0; i < GTEST_ARRAY_SIZE_(kEdges); ++i) { |
|
g.SetEdge(kEdges[i][0], kEdges[i][1], true); |
|
} |
|
EXPECT_THAT(FindBacktrackingMaxBPM(g), |
|
ElementsAre(Pair(3, 0), |
|
Pair(AnyOf(1, 2), 1), |
|
Pair(0, 2))) << g.DebugString(); |
|
} |
|
|
|
// Verify a few nonsquare matrices. |
|
TEST_P(BipartiteNonSquareTest, Exhaustive) { |
|
size_t nlhs = GetParam().first; |
|
size_t nrhs = GetParam().second; |
|
MatchMatrix graph(nlhs, nrhs); |
|
do { |
|
EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), |
|
internal::FindMaxBipartiteMatching(graph).size()) |
|
<< "graph: " << graph.DebugString() |
|
<< "\nbacktracking: " |
|
<< PrintToString(FindBacktrackingMaxBPM(graph)) |
|
<< "\nmax flow: " |
|
<< PrintToString(internal::FindMaxBipartiteMatching(graph)); |
|
} while (graph.NextGraph()); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteNonSquareTest, |
|
testing::Values( |
|
std::make_pair(1, 2), |
|
std::make_pair(2, 1), |
|
std::make_pair(3, 2), |
|
std::make_pair(2, 3), |
|
std::make_pair(4, 1), |
|
std::make_pair(1, 4), |
|
std::make_pair(4, 3), |
|
std::make_pair(3, 4))); |
|
|
|
class BipartiteRandomTest |
|
: public ::testing::TestWithParam<std::pair<int, int> > { |
|
}; |
|
|
|
// Verifies a large sample of larger graphs. |
|
TEST_P(BipartiteRandomTest, LargerNets) { |
|
int nodes = GetParam().first; |
|
int iters = GetParam().second; |
|
MatchMatrix graph(static_cast<size_t>(nodes), static_cast<size_t>(nodes)); |
|
|
|
auto seed = static_cast<testing::internal::UInt32>(GTEST_FLAG(random_seed)); |
|
if (seed == 0) { |
|
seed = static_cast<testing::internal::UInt32>(time(nullptr)); |
|
} |
|
|
|
for (; iters > 0; --iters, ++seed) { |
|
srand(static_cast<unsigned int>(seed)); |
|
graph.Randomize(); |
|
EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), |
|
internal::FindMaxBipartiteMatching(graph).size()) |
|
<< " graph: " << graph.DebugString() |
|
<< "\nTo reproduce the failure, rerun the test with the flag" |
|
" --" << GTEST_FLAG_PREFIX_ << "random_seed=" << seed; |
|
} |
|
} |
|
|
|
// Test argument is a std::pair<int, int> representing (nodes, iters). |
|
INSTANTIATE_TEST_SUITE_P(Samples, BipartiteRandomTest, |
|
testing::Values( |
|
std::make_pair(5, 10000), |
|
std::make_pair(6, 5000), |
|
std::make_pair(7, 2000), |
|
std::make_pair(8, 500), |
|
std::make_pair(9, 100))); |
|
|
|
// Tests IsReadableTypeName(). |
|
|
|
TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) { |
|
EXPECT_TRUE(IsReadableTypeName("int")); |
|
EXPECT_TRUE(IsReadableTypeName("const unsigned char*")); |
|
EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>")); |
|
EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)")); |
|
} |
|
|
|
TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) { |
|
EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName")); |
|
EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]")); |
|
EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass")); |
|
} |
|
|
|
TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) { |
|
EXPECT_FALSE( |
|
IsReadableTypeName("basic_string<char, std::char_traits<char> >")); |
|
EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >")); |
|
} |
|
|
|
TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) { |
|
EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)")); |
|
} |
|
|
|
// Tests FormatMatcherDescription(). |
|
|
|
TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) { |
|
EXPECT_EQ("is even", |
|
FormatMatcherDescription(false, "IsEven", Strings())); |
|
EXPECT_EQ("not (is even)", |
|
FormatMatcherDescription(true, "IsEven", Strings())); |
|
|
|
const char* params[] = {"5"}; |
|
EXPECT_EQ("equals 5", |
|
FormatMatcherDescription(false, "Equals", |
|
Strings(params, params + 1))); |
|
|
|
const char* params2[] = {"5", "8"}; |
|
EXPECT_EQ("is in range (5, 8)", |
|
FormatMatcherDescription(false, "IsInRange", |
|
Strings(params2, params2 + 2))); |
|
} |
|
|
|
// Tests PolymorphicMatcher::mutable_impl(). |
|
TEST(PolymorphicMatcherTest, CanAccessMutableImpl) { |
|
PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); |
|
DivisibleByImpl& impl = m.mutable_impl(); |
|
EXPECT_EQ(42, impl.divider()); |
|
|
|
impl.set_divider(0); |
|
EXPECT_EQ(0, m.mutable_impl().divider()); |
|
} |
|
|
|
// Tests PolymorphicMatcher::impl(). |
|
TEST(PolymorphicMatcherTest, CanAccessImpl) { |
|
const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); |
|
const DivisibleByImpl& impl = m.impl(); |
|
EXPECT_EQ(42, impl.divider()); |
|
} |
|
|
|
TEST(MatcherTupleTest, ExplainsMatchFailure) { |
|
stringstream ss1; |
|
ExplainMatchFailureTupleTo( |
|
std::make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)), |
|
std::make_tuple('a', 10), &ss1); |
|
EXPECT_EQ("", ss1.str()); // Successful match. |
|
|
|
stringstream ss2; |
|
ExplainMatchFailureTupleTo( |
|
std::make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), |
|
std::make_tuple(2, 'b'), &ss2); |
|
EXPECT_EQ(" Expected arg #0: is > 5\n" |
|
" Actual: 2, which is 3 less than 5\n" |
|
" Expected arg #1: is equal to 'a' (97, 0x61)\n" |
|
" Actual: 'b' (98, 0x62)\n", |
|
ss2.str()); // Failed match where both arguments need explanation. |
|
|
|
stringstream ss3; |
|
ExplainMatchFailureTupleTo( |
|
std::make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), |
|
std::make_tuple(2, 'a'), &ss3); |
|
EXPECT_EQ(" Expected arg #0: is > 5\n" |
|
" Actual: 2, which is 3 less than 5\n", |
|
ss3.str()); // Failed match where only one argument needs |
|
// explanation. |
|
} |
|
|
|
// Tests Each(). |
|
|
|
TEST(EachTest, ExplainsMatchResultCorrectly) { |
|
set<int> a; // empty |
|
|
|
Matcher<set<int> > m = Each(2); |
|
EXPECT_EQ("", Explain(m, a)); |
|
|
|
Matcher<const int(&)[1]> n = Each(1); // NOLINT |
|
|
|
const int b[1] = {1}; |
|
EXPECT_EQ("", Explain(n, b)); |
|
|
|
n = Each(3); |
|
EXPECT_EQ("whose element #0 doesn't match", Explain(n, b)); |
|
|
|
a.insert(1); |
|
a.insert(2); |
|
a.insert(3); |
|
m = Each(GreaterThan(0)); |
|
EXPECT_EQ("", Explain(m, a)); |
|
|
|
m = Each(GreaterThan(10)); |
|
EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10", |
|
Explain(m, a)); |
|
} |
|
|
|
TEST(EachTest, DescribesItselfCorrectly) { |
|
Matcher<vector<int> > m = Each(1); |
|
EXPECT_EQ("only contains elements that is equal to 1", Describe(m)); |
|
|
|
Matcher<vector<int> > m2 = Not(m); |
|
EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2)); |
|
} |
|
|
|
TEST(EachTest, MatchesVectorWhenAllElementsMatch) { |
|
vector<int> some_vector; |
|
EXPECT_THAT(some_vector, Each(1)); |
|
some_vector.push_back(3); |
|
EXPECT_THAT(some_vector, Not(Each(1))); |
|
EXPECT_THAT(some_vector, Each(3)); |
|
some_vector.push_back(1); |
|
some_vector.push_back(2); |
|
EXPECT_THAT(some_vector, Not(Each(3))); |
|
EXPECT_THAT(some_vector, Each(Lt(3.5))); |
|
|
|
vector<std::string> another_vector; |
|
another_vector.push_back("fee"); |
|
EXPECT_THAT(another_vector, Each(std::string("fee"))); |
|
another_vector.push_back("fie"); |
|
another_vector.push_back("foe"); |
|
another_vector.push_back("fum"); |
|
EXPECT_THAT(another_vector, Not(Each(std::string("fee")))); |
|
} |
|
|
|
TEST(EachTest, MatchesMapWhenAllElementsMatch) { |
|
map<const char*, int> my_map; |
|
const char* bar = "a string"; |
|
my_map[bar] = 2; |
|
EXPECT_THAT(my_map, Each(make_pair(bar, 2))); |
|
|
|
map<std::string, int> another_map; |
|
EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); |
|
another_map["fee"] = 1; |
|
EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); |
|
another_map["fie"] = 2; |
|
another_map["foe"] = 3; |
|
another_map["fum"] = 4; |
|
EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fee"), 1)))); |
|
EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fum"), 1)))); |
|
EXPECT_THAT(another_map, Each(Pair(_, Gt(0)))); |
|
} |
|
|
|
TEST(EachTest, AcceptsMatcher) { |
|
const int a[] = {1, 2, 3}; |
|
EXPECT_THAT(a, Each(Gt(0))); |
|
EXPECT_THAT(a, Not(Each(Gt(1)))); |
|
} |
|
|
|
TEST(EachTest, WorksForNativeArrayAsTuple) { |
|
const int a[] = {1, 2}; |
|
const int* const pointer = a; |
|
EXPECT_THAT(std::make_tuple(pointer, 2), Each(Gt(0))); |
|
EXPECT_THAT(std::make_tuple(pointer, 2), Not(Each(Gt(1)))); |
|
} |
|
|
|
TEST(EachTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(Each(Pointee(Gt(0))))); |
|
helper.Call(MakeUniquePtrs({1, 2})); |
|
} |
|
|
|
// For testing Pointwise(). |
|
class IsHalfOfMatcher { |
|
public: |
|
template <typename T1, typename T2> |
|
bool MatchAndExplain(const std::tuple<T1, T2>& a_pair, |
|
MatchResultListener* listener) const { |
|
if (std::get<0>(a_pair) == std::get<1>(a_pair) / 2) { |
|
*listener << "where the second is " << std::get<1>(a_pair); |
|
return true; |
|
} else { |
|
*listener << "where the second/2 is " << std::get<1>(a_pair) / 2; |
|
return false; |
|
} |
|
} |
|
|
|
void DescribeTo(ostream* os) const { |
|
*os << "are a pair where the first is half of the second"; |
|
} |
|
|
|
void DescribeNegationTo(ostream* os) const { |
|
*os << "are a pair where the first isn't half of the second"; |
|
} |
|
}; |
|
|
|
PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() { |
|
return MakePolymorphicMatcher(IsHalfOfMatcher()); |
|
} |
|
|
|
TEST(PointwiseTest, DescribesSelf) { |
|
vector<int> rhs; |
|
rhs.push_back(1); |
|
rhs.push_back(2); |
|
rhs.push_back(3); |
|
const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs); |
|
EXPECT_EQ("contains 3 values, where each value and its corresponding value " |
|
"in { 1, 2, 3 } are a pair where the first is half of the second", |
|
Describe(m)); |
|
EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some " |
|
"index i where x and the i-th value of { 1, 2, 3 } are a pair " |
|
"where the first isn't half of the second", |
|
DescribeNegation(m)); |
|
} |
|
|
|
TEST(PointwiseTest, MakesCopyOfRhs) { |
|
list<signed char> rhs; |
|
rhs.push_back(2); |
|
rhs.push_back(4); |
|
|
|
int lhs[] = {1, 2}; |
|
const Matcher<const int (&)[2]> m = Pointwise(IsHalfOf(), rhs); |
|
EXPECT_THAT(lhs, m); |
|
|
|
// Changing rhs now shouldn't affect m, which made a copy of rhs. |
|
rhs.push_back(6); |
|
EXPECT_THAT(lhs, m); |
|
} |
|
|
|
TEST(PointwiseTest, WorksForLhsNativeArray) { |
|
const int lhs[] = {1, 2, 3}; |
|
vector<int> rhs; |
|
rhs.push_back(2); |
|
rhs.push_back(4); |
|
rhs.push_back(6); |
|
EXPECT_THAT(lhs, Pointwise(Lt(), rhs)); |
|
EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); |
|
} |
|
|
|
TEST(PointwiseTest, WorksForRhsNativeArray) { |
|
const int rhs[] = {1, 2, 3}; |
|
vector<int> lhs; |
|
lhs.push_back(2); |
|
lhs.push_back(4); |
|
lhs.push_back(6); |
|
EXPECT_THAT(lhs, Pointwise(Gt(), rhs)); |
|
EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs))); |
|
} |
|
|
|
// Test is effective only with sanitizers. |
|
TEST(PointwiseTest, WorksForVectorOfBool) { |
|
vector<bool> rhs(3, false); |
|
rhs[1] = true; |
|
vector<bool> lhs = rhs; |
|
EXPECT_THAT(lhs, Pointwise(Eq(), rhs)); |
|
rhs[0] = true; |
|
EXPECT_THAT(lhs, Not(Pointwise(Eq(), rhs))); |
|
} |
|
|
|
|
|
TEST(PointwiseTest, WorksForRhsInitializerList) { |
|
const vector<int> lhs{2, 4, 6}; |
|
EXPECT_THAT(lhs, Pointwise(Gt(), {1, 2, 3})); |
|
EXPECT_THAT(lhs, Not(Pointwise(Lt(), {3, 3, 7}))); |
|
} |
|
|
|
|
|
TEST(PointwiseTest, RejectsWrongSize) { |
|
const double lhs[2] = {1, 2}; |
|
const int rhs[1] = {0}; |
|
EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); |
|
EXPECT_EQ("which contains 2 values", |
|
Explain(Pointwise(Gt(), rhs), lhs)); |
|
|
|
const int rhs2[3] = {0, 1, 2}; |
|
EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2))); |
|
} |
|
|
|
TEST(PointwiseTest, RejectsWrongContent) { |
|
const double lhs[3] = {1, 2, 3}; |
|
const int rhs[3] = {2, 6, 4}; |
|
EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs))); |
|
EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, " |
|
"where the second/2 is 3", |
|
Explain(Pointwise(IsHalfOf(), rhs), lhs)); |
|
} |
|
|
|
TEST(PointwiseTest, AcceptsCorrectContent) { |
|
const double lhs[3] = {1, 2, 3}; |
|
const int rhs[3] = {2, 4, 6}; |
|
EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs)); |
|
EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs)); |
|
} |
|
|
|
TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) { |
|
const double lhs[3] = {1, 2, 3}; |
|
const int rhs[3] = {2, 4, 6}; |
|
const Matcher<std::tuple<const double&, const int&>> m1 = IsHalfOf(); |
|
EXPECT_THAT(lhs, Pointwise(m1, rhs)); |
|
EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs)); |
|
|
|
// This type works as a std::tuple<const double&, const int&> can be |
|
// implicitly cast to std::tuple<double, int>. |
|
const Matcher<std::tuple<double, int>> m2 = IsHalfOf(); |
|
EXPECT_THAT(lhs, Pointwise(m2, rhs)); |
|
EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs)); |
|
} |
|
|
|
MATCHER(PointeeEquals, "Points to an equal value") { |
|
return ExplainMatchResult(::testing::Pointee(::testing::get<1>(arg)), |
|
::testing::get<0>(arg), result_listener); |
|
} |
|
|
|
TEST(PointwiseTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(Pointwise(PointeeEquals(), std::vector<int>{1, 2}))); |
|
helper.Call(MakeUniquePtrs({1, 2})); |
|
} |
|
|
|
TEST(UnorderedPointwiseTest, DescribesSelf) { |
|
vector<int> rhs; |
|
rhs.push_back(1); |
|
rhs.push_back(2); |
|
rhs.push_back(3); |
|
const Matcher<const vector<int>&> m = UnorderedPointwise(IsHalfOf(), rhs); |
|
EXPECT_EQ( |
|
"has 3 elements and there exists some permutation of elements such " |
|
"that:\n" |
|
" - element #0 and 1 are a pair where the first is half of the second, " |
|
"and\n" |
|
" - element #1 and 2 are a pair where the first is half of the second, " |
|
"and\n" |
|
" - element #2 and 3 are a pair where the first is half of the second", |
|
Describe(m)); |
|
EXPECT_EQ( |
|
"doesn't have 3 elements, or there exists no permutation of elements " |
|
"such that:\n" |
|
" - element #0 and 1 are a pair where the first is half of the second, " |
|
"and\n" |
|
" - element #1 and 2 are a pair where the first is half of the second, " |
|
"and\n" |
|
" - element #2 and 3 are a pair where the first is half of the second", |
|
DescribeNegation(m)); |
|
} |
|
|
|
TEST(UnorderedPointwiseTest, MakesCopyOfRhs) { |
|
list<signed char> rhs; |
|
rhs.push_back(2); |
|
rhs.push_back(4); |
|
|
|
int lhs[] = {2, 1}; |
|
const Matcher<const int (&)[2]> m = UnorderedPointwise(IsHalfOf(), rhs); |
|
EXPECT_THAT(lhs, m); |
|
|
|
// Changing rhs now shouldn't affect m, which made a copy of rhs. |
|
rhs.push_back(6); |
|
EXPECT_THAT(lhs, m); |
|
} |
|
|
|
TEST(UnorderedPointwiseTest, WorksForLhsNativeArray) { |
|
const int lhs[] = {1, 2, 3}; |
|
vector<int> rhs; |
|
rhs.push_back(4); |
|
rhs.push_back(6); |
|
rhs.push_back(2); |
|
EXPECT_THAT(lhs, UnorderedPointwise(Lt(), rhs)); |
|
EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); |
|
} |
|
|
|
TEST(UnorderedPointwiseTest, WorksForRhsNativeArray) { |
|
const int rhs[] = {1, 2, 3}; |
|
vector<int> lhs; |
|
lhs.push_back(4); |
|
lhs.push_back(2); |
|
lhs.push_back(6); |
|
EXPECT_THAT(lhs, UnorderedPointwise(Gt(), rhs)); |
|
EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), rhs))); |
|
} |
|
|
|
|
|
TEST(UnorderedPointwiseTest, WorksForRhsInitializerList) { |
|
const vector<int> lhs{2, 4, 6}; |
|
EXPECT_THAT(lhs, UnorderedPointwise(Gt(), {5, 1, 3})); |
|
EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), {1, 1, 7}))); |
|
} |
|
|
|
|
|
TEST(UnorderedPointwiseTest, RejectsWrongSize) { |
|
const double lhs[2] = {1, 2}; |
|
const int rhs[1] = {0}; |
|
EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); |
|
EXPECT_EQ("which has 2 elements", |
|
Explain(UnorderedPointwise(Gt(), rhs), lhs)); |
|
|
|
const int rhs2[3] = {0, 1, 2}; |
|
EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs2))); |
|
} |
|
|
|
TEST(UnorderedPointwiseTest, RejectsWrongContent) { |
|
const double lhs[3] = {1, 2, 3}; |
|
const int rhs[3] = {2, 6, 6}; |
|
EXPECT_THAT(lhs, Not(UnorderedPointwise(IsHalfOf(), rhs))); |
|
EXPECT_EQ("where the following elements don't match any matchers:\n" |
|
"element #1: 2", |
|
Explain(UnorderedPointwise(IsHalfOf(), rhs), lhs)); |
|
} |
|
|
|
TEST(UnorderedPointwiseTest, AcceptsCorrectContentInSameOrder) { |
|
const double lhs[3] = {1, 2, 3}; |
|
const int rhs[3] = {2, 4, 6}; |
|
EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); |
|
} |
|
|
|
TEST(UnorderedPointwiseTest, AcceptsCorrectContentInDifferentOrder) { |
|
const double lhs[3] = {1, 2, 3}; |
|
const int rhs[3] = {6, 4, 2}; |
|
EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); |
|
} |
|
|
|
TEST(UnorderedPointwiseTest, AllowsMonomorphicInnerMatcher) { |
|
const double lhs[3] = {1, 2, 3}; |
|
const int rhs[3] = {4, 6, 2}; |
|
const Matcher<std::tuple<const double&, const int&>> m1 = IsHalfOf(); |
|
EXPECT_THAT(lhs, UnorderedPointwise(m1, rhs)); |
|
|
|
// This type works as a std::tuple<const double&, const int&> can be |
|
// implicitly cast to std::tuple<double, int>. |
|
const Matcher<std::tuple<double, int>> m2 = IsHalfOf(); |
|
EXPECT_THAT(lhs, UnorderedPointwise(m2, rhs)); |
|
} |
|
|
|
TEST(UnorderedPointwiseTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(UnorderedPointwise(PointeeEquals(), |
|
std::vector<int>{1, 2}))); |
|
helper.Call(MakeUniquePtrs({2, 1})); |
|
} |
|
|
|
// Sample optional type implementation with minimal requirements for use with |
|
// Optional matcher. |
|
template <typename T> |
|
class SampleOptional { |
|
public: |
|
using value_type = T; |
|
explicit SampleOptional(T value) |
|
: value_(std::move(value)), has_value_(true) {} |
|
SampleOptional() : value_(), has_value_(false) {} |
|
operator bool() const { return has_value_; } |
|
const T& operator*() const { return value_; } |
|
|
|
private: |
|
T value_; |
|
bool has_value_; |
|
}; |
|
|
|
TEST(OptionalTest, DescribesSelf) { |
|
const Matcher<SampleOptional<int>> m = Optional(Eq(1)); |
|
EXPECT_EQ("value is equal to 1", Describe(m)); |
|
} |
|
|
|
TEST(OptionalTest, ExplainsSelf) { |
|
const Matcher<SampleOptional<int>> m = Optional(Eq(1)); |
|
EXPECT_EQ("whose value 1 matches", Explain(m, SampleOptional<int>(1))); |
|
EXPECT_EQ("whose value 2 doesn't match", Explain(m, SampleOptional<int>(2))); |
|
} |
|
|
|
TEST(OptionalTest, MatchesNonEmptyOptional) { |
|
const Matcher<SampleOptional<int>> m1 = Optional(1); |
|
const Matcher<SampleOptional<int>> m2 = Optional(Eq(2)); |
|
const Matcher<SampleOptional<int>> m3 = Optional(Lt(3)); |
|
SampleOptional<int> opt(1); |
|
EXPECT_TRUE(m1.Matches(opt)); |
|
EXPECT_FALSE(m2.Matches(opt)); |
|
EXPECT_TRUE(m3.Matches(opt)); |
|
} |
|
|
|
TEST(OptionalTest, DoesNotMatchNullopt) { |
|
const Matcher<SampleOptional<int>> m = Optional(1); |
|
SampleOptional<int> empty; |
|
EXPECT_FALSE(m.Matches(empty)); |
|
} |
|
|
|
TEST(OptionalTest, WorksWithMoveOnly) { |
|
Matcher<SampleOptional<std::unique_ptr<int>>> m = Optional(Eq(nullptr)); |
|
EXPECT_TRUE(m.Matches(SampleOptional<std::unique_ptr<int>>(nullptr))); |
|
} |
|
|
|
class SampleVariantIntString { |
|
public: |
|
SampleVariantIntString(int i) : i_(i), has_int_(true) {} |
|
SampleVariantIntString(const std::string& s) : s_(s), has_int_(false) {} |
|
|
|
template <typename T> |
|
friend bool holds_alternative(const SampleVariantIntString& value) { |
|
return value.has_int_ == std::is_same<T, int>::value; |
|
} |
|
|
|
template <typename T> |
|
friend const T& get(const SampleVariantIntString& value) { |
|
return value.get_impl(static_cast<T*>(nullptr)); |
|
} |
|
|
|
private: |
|
const int& get_impl(int*) const { return i_; } |
|
const std::string& get_impl(std::string*) const { return s_; } |
|
|
|
int i_; |
|
std::string s_; |
|
bool has_int_; |
|
}; |
|
|
|
TEST(VariantTest, DescribesSelf) { |
|
const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_THAT(Describe(m), ContainsRegex("is a variant<> with value of type " |
|
"'.*' and the value is equal to 1")); |
|
} |
|
|
|
TEST(VariantTest, ExplainsSelf) { |
|
const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_THAT(Explain(m, SampleVariantIntString(1)), |
|
ContainsRegex("whose value 1")); |
|
EXPECT_THAT(Explain(m, SampleVariantIntString("A")), |
|
HasSubstr("whose value is not of type '")); |
|
EXPECT_THAT(Explain(m, SampleVariantIntString(2)), |
|
"whose value 2 doesn't match"); |
|
} |
|
|
|
TEST(VariantTest, FullMatch) { |
|
Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_TRUE(m.Matches(SampleVariantIntString(1))); |
|
|
|
m = VariantWith<std::string>(Eq("1")); |
|
EXPECT_TRUE(m.Matches(SampleVariantIntString("1"))); |
|
} |
|
|
|
TEST(VariantTest, TypeDoesNotMatch) { |
|
Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_FALSE(m.Matches(SampleVariantIntString("1"))); |
|
|
|
m = VariantWith<std::string>(Eq("1")); |
|
EXPECT_FALSE(m.Matches(SampleVariantIntString(1))); |
|
} |
|
|
|
TEST(VariantTest, InnerDoesNotMatch) { |
|
Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_FALSE(m.Matches(SampleVariantIntString(2))); |
|
|
|
m = VariantWith<std::string>(Eq("1")); |
|
EXPECT_FALSE(m.Matches(SampleVariantIntString("2"))); |
|
} |
|
|
|
class SampleAnyType { |
|
public: |
|
explicit SampleAnyType(int i) : index_(0), i_(i) {} |
|
explicit SampleAnyType(const std::string& s) : index_(1), s_(s) {} |
|
|
|
template <typename T> |
|
friend const T* any_cast(const SampleAnyType* any) { |
|
return any->get_impl(static_cast<T*>(nullptr)); |
|
} |
|
|
|
private: |
|
int index_; |
|
int i_; |
|
std::string s_; |
|
|
|
const int* get_impl(int*) const { return index_ == 0 ? &i_ : nullptr; } |
|
const std::string* get_impl(std::string*) const { |
|
return index_ == 1 ? &s_ : nullptr; |
|
} |
|
}; |
|
|
|
TEST(AnyWithTest, FullMatch) { |
|
Matcher<SampleAnyType> m = AnyWith<int>(Eq(1)); |
|
EXPECT_TRUE(m.Matches(SampleAnyType(1))); |
|
} |
|
|
|
TEST(AnyWithTest, TestBadCastType) { |
|
Matcher<SampleAnyType> m = AnyWith<std::string>(Eq("fail")); |
|
EXPECT_FALSE(m.Matches(SampleAnyType(1))); |
|
} |
|
|
|
TEST(AnyWithTest, TestUseInContainers) { |
|
std::vector<SampleAnyType> a; |
|
a.emplace_back(1); |
|
a.emplace_back(2); |
|
a.emplace_back(3); |
|
EXPECT_THAT( |
|
a, ElementsAreArray({AnyWith<int>(1), AnyWith<int>(2), AnyWith<int>(3)})); |
|
|
|
std::vector<SampleAnyType> b; |
|
b.emplace_back("hello"); |
|
b.emplace_back("merhaba"); |
|
b.emplace_back("salut"); |
|
EXPECT_THAT(b, ElementsAreArray({AnyWith<std::string>("hello"), |
|
AnyWith<std::string>("merhaba"), |
|
AnyWith<std::string>("salut")})); |
|
} |
|
TEST(AnyWithTest, TestCompare) { |
|
EXPECT_THAT(SampleAnyType(1), AnyWith<int>(Gt(0))); |
|
} |
|
|
|
TEST(AnyWithTest, DescribesSelf) { |
|
const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1)); |
|
EXPECT_THAT(Describe(m), ContainsRegex("is an 'any' type with value of type " |
|
"'.*' and the value is equal to 1")); |
|
} |
|
|
|
TEST(AnyWithTest, ExplainsSelf) { |
|
const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1)); |
|
|
|
EXPECT_THAT(Explain(m, SampleAnyType(1)), ContainsRegex("whose value 1")); |
|
EXPECT_THAT(Explain(m, SampleAnyType("A")), |
|
HasSubstr("whose value is not of type '")); |
|
EXPECT_THAT(Explain(m, SampleAnyType(2)), "whose value 2 doesn't match"); |
|
} |
|
|
|
TEST(PointeeTest, WorksOnMoveOnlyType) { |
|
std::unique_ptr<int> p(new int(3)); |
|
EXPECT_THAT(p, Pointee(Eq(3))); |
|
EXPECT_THAT(p, Not(Pointee(Eq(2)))); |
|
} |
|
|
|
TEST(NotTest, WorksOnMoveOnlyType) { |
|
std::unique_ptr<int> p(new int(3)); |
|
EXPECT_THAT(p, Pointee(Eq(3))); |
|
EXPECT_THAT(p, Not(Pointee(Eq(2)))); |
|
} |
|
|
|
// Tests Args<k0, ..., kn>(m). |
|
|
|
TEST(ArgsTest, AcceptsZeroTemplateArg) { |
|
const std::tuple<int, bool> t(5, true); |
|
EXPECT_THAT(t, Args<>(Eq(std::tuple<>()))); |
|
EXPECT_THAT(t, Not(Args<>(Ne(std::tuple<>())))); |
|
} |
|
|
|
TEST(ArgsTest, AcceptsOneTemplateArg) { |
|
const std::tuple<int, bool> t(5, true); |
|
EXPECT_THAT(t, Args<0>(Eq(std::make_tuple(5)))); |
|
EXPECT_THAT(t, Args<1>(Eq(std::make_tuple(true)))); |
|
EXPECT_THAT(t, Not(Args<1>(Eq(std::make_tuple(false))))); |
|
} |
|
|
|
TEST(ArgsTest, AcceptsTwoTemplateArgs) { |
|
const std::tuple<short, int, long> t(4, 5, 6L); // NOLINT |
|
|
|
EXPECT_THAT(t, (Args<0, 1>(Lt()))); |
|
EXPECT_THAT(t, (Args<1, 2>(Lt()))); |
|
EXPECT_THAT(t, Not(Args<0, 2>(Gt()))); |
|
} |
|
|
|
TEST(ArgsTest, AcceptsRepeatedTemplateArgs) { |
|
const std::tuple<short, int, long> t(4, 5, 6L); // NOLINT |
|
EXPECT_THAT(t, (Args<0, 0>(Eq()))); |
|
EXPECT_THAT(t, Not(Args<1, 1>(Ne()))); |
|
} |
|
|
|
TEST(ArgsTest, AcceptsDecreasingTemplateArgs) { |
|
const std::tuple<short, int, long> t(4, 5, 6L); // NOLINT |
|
EXPECT_THAT(t, (Args<2, 0>(Gt()))); |
|
EXPECT_THAT(t, Not(Args<2, 1>(Lt()))); |
|
} |
|
|
|
MATCHER(SumIsZero, "") { |
|
return std::get<0>(arg) + std::get<1>(arg) + std::get<2>(arg) == 0; |
|
} |
|
|
|
TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) { |
|
EXPECT_THAT(std::make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero()))); |
|
EXPECT_THAT(std::make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero()))); |
|
} |
|
|
|
TEST(ArgsTest, CanBeNested) { |
|
const std::tuple<short, int, long, int> t(4, 5, 6L, 6); // NOLINT |
|
EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq())))); |
|
EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt())))); |
|
} |
|
|
|
TEST(ArgsTest, CanMatchTupleByValue) { |
|
typedef std::tuple<char, int, int> Tuple3; |
|
const Matcher<Tuple3> m = Args<1, 2>(Lt()); |
|
EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2))); |
|
EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2))); |
|
} |
|
|
|
TEST(ArgsTest, CanMatchTupleByReference) { |
|
typedef std::tuple<char, char, int> Tuple3; |
|
const Matcher<const Tuple3&> m = Args<0, 1>(Lt()); |
|
EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2))); |
|
EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2))); |
|
} |
|
|
|
// Validates that arg is printed as str. |
|
MATCHER_P(PrintsAs, str, "") { |
|
return testing::PrintToString(arg) == str; |
|
} |
|
|
|
TEST(ArgsTest, AcceptsTenTemplateArgs) { |
|
EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), |
|
(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( |
|
PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); |
|
EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), |
|
Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( |
|
PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); |
|
} |
|
|
|
TEST(ArgsTest, DescirbesSelfCorrectly) { |
|
const Matcher<std::tuple<int, bool, char> > m = Args<2, 0>(Lt()); |
|
EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where " |
|
"the first < the second", |
|
Describe(m)); |
|
} |
|
|
|
TEST(ArgsTest, DescirbesNestedArgsCorrectly) { |
|
const Matcher<const std::tuple<int, bool, char, int>&> m = |
|
Args<0, 2, 3>(Args<2, 0>(Lt())); |
|
EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple " |
|
"whose fields (#2, #0) are a pair where the first < the second", |
|
Describe(m)); |
|
} |
|
|
|
TEST(ArgsTest, DescribesNegationCorrectly) { |
|
const Matcher<std::tuple<int, char> > m = Args<1, 0>(Gt()); |
|
EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair " |
|
"where the first > the second", |
|
DescribeNegation(m)); |
|
} |
|
|
|
TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) { |
|
const Matcher<std::tuple<bool, int, int> > m = Args<1, 2>(Eq()); |
|
EXPECT_EQ("whose fields (#1, #2) are (42, 42)", |
|
Explain(m, std::make_tuple(false, 42, 42))); |
|
EXPECT_EQ("whose fields (#1, #2) are (42, 43)", |
|
Explain(m, std::make_tuple(false, 42, 43))); |
|
} |
|
|
|
// For testing Args<>'s explanation. |
|
class LessThanMatcher : public MatcherInterface<std::tuple<char, int> > { |
|
public: |
|
void DescribeTo(::std::ostream* /*os*/) const override {} |
|
|
|
bool MatchAndExplain(std::tuple<char, int> value, |
|
MatchResultListener* listener) const override { |
|
const int diff = std::get<0>(value) - std::get<1>(value); |
|
if (diff > 0) { |
|
*listener << "where the first value is " << diff |
|
<< " more than the second"; |
|
} |
|
return diff < 0; |
|
} |
|
}; |
|
|
|
Matcher<std::tuple<char, int> > LessThan() { |
|
return MakeMatcher(new LessThanMatcher); |
|
} |
|
|
|
TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) { |
|
const Matcher<std::tuple<char, int, int> > m = Args<0, 2>(LessThan()); |
|
EXPECT_EQ( |
|
"whose fields (#0, #2) are ('a' (97, 0x61), 42), " |
|
"where the first value is 55 more than the second", |
|
Explain(m, std::make_tuple('a', 42, 42))); |
|
EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)", |
|
Explain(m, std::make_tuple('\0', 42, 43))); |
|
} |
|
|
|
class PredicateFormatterFromMatcherTest : public ::testing::Test { |
|
protected: |
|
enum Behavior { kInitialSuccess, kAlwaysFail, kFlaky }; |
|
|
|
// A matcher that can return different results when used multiple times on the |
|
// same input. No real matcher should do this; but this lets us test that we |
|
// detect such behavior and fail appropriately. |
|
class MockMatcher : public MatcherInterface<Behavior> { |
|
public: |
|
bool MatchAndExplain(Behavior behavior, |
|
MatchResultListener* listener) const override { |
|
*listener << "[MatchAndExplain]"; |
|
switch (behavior) { |
|
case kInitialSuccess: |
|
// The first call to MatchAndExplain should use a "not interested" |
|
// listener; so this is expected to return |true|. There should be no |
|
// subsequent calls. |
|
return !listener->IsInterested(); |
|
|
|
case kAlwaysFail: |
|
return false; |
|
|
|
case kFlaky: |
|
// The first call to MatchAndExplain should use a "not interested" |
|
// listener; so this will return |false|. Subsequent calls should have |
|
// an "interested" listener; so this will return |true|, thus |
|
// simulating a flaky matcher. |
|
return listener->IsInterested(); |
|
} |
|
|
|
GTEST_LOG_(FATAL) << "This should never be reached"; |
|
return false; |
|
} |
|
|
|
void DescribeTo(ostream* os) const override { *os << "[DescribeTo]"; } |
|
|
|
void DescribeNegationTo(ostream* os) const override { |
|
*os << "[DescribeNegationTo]"; |
|
} |
|
}; |
|
|
|
AssertionResult RunPredicateFormatter(Behavior behavior) { |
|
auto matcher = MakeMatcher(new MockMatcher); |
|
PredicateFormatterFromMatcher<Matcher<Behavior>> predicate_formatter( |
|
matcher); |
|
return predicate_formatter("dummy-name", behavior); |
|
} |
|
}; |
|
|
|
TEST_F(PredicateFormatterFromMatcherTest, ShortCircuitOnSuccess) { |
|
AssertionResult result = RunPredicateFormatter(kInitialSuccess); |
|
EXPECT_TRUE(result); // Implicit cast to bool. |
|
std::string expect; |
|
EXPECT_EQ(expect, result.message()); |
|
} |
|
|
|
TEST_F(PredicateFormatterFromMatcherTest, NoShortCircuitOnFailure) { |
|
AssertionResult result = RunPredicateFormatter(kAlwaysFail); |
|
EXPECT_FALSE(result); // Implicit cast to bool. |
|
std::string expect = |
|
"Value of: dummy-name\nExpected: [DescribeTo]\n" |
|
" Actual: 1, [MatchAndExplain]"; |
|
EXPECT_EQ(expect, result.message()); |
|
} |
|
|
|
TEST_F(PredicateFormatterFromMatcherTest, DetectsFlakyShortCircuit) { |
|
AssertionResult result = RunPredicateFormatter(kFlaky); |
|
EXPECT_FALSE(result); // Implicit cast to bool. |
|
std::string expect = |
|
"Value of: dummy-name\nExpected: [DescribeTo]\n" |
|
" The matcher failed on the initial attempt; but passed when rerun to " |
|
"generate the explanation.\n" |
|
" Actual: 2, [MatchAndExplain]"; |
|
EXPECT_EQ(expect, result.message()); |
|
} |
|
|
|
} // namespace |
|
} // namespace gmock_matchers_test |
|
} // namespace testing |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(pop) |
|
#endif
|
|
|