You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1064 lines
35 KiB
1064 lines
35 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file tests the built-in actions generated by a script. |
|
|
|
#include "gmock/gmock-generated-actions.h" |
|
|
|
#include <functional> |
|
#include <memory> |
|
#include <sstream> |
|
#include <string> |
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
|
|
namespace testing { |
|
namespace gmock_generated_actions_test { |
|
|
|
using ::std::plus; |
|
using ::std::string; |
|
using testing::_; |
|
using testing::Action; |
|
using testing::ActionInterface; |
|
using testing::ByRef; |
|
using testing::DoAll; |
|
using testing::Invoke; |
|
using testing::Return; |
|
using testing::ReturnNew; |
|
using testing::SetArgPointee; |
|
using testing::StaticAssertTypeEq; |
|
using testing::Unused; |
|
|
|
// For suppressing compiler warnings on conversion possibly losing precision. |
|
inline short Short(short n) { return n; } // NOLINT |
|
inline char Char(char ch) { return ch; } |
|
|
|
// Sample functions and functors for testing various actions. |
|
int Nullary() { return 1; } |
|
|
|
bool g_done = false; |
|
|
|
bool ByConstRef(const std::string& s) { return s == "Hi"; } |
|
|
|
const double g_double = 0; |
|
bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; } |
|
|
|
struct UnaryFunctor { |
|
int operator()(bool x) { return x ? 1 : -1; } |
|
}; |
|
|
|
const char* Binary(const char* input, short n) { return input + n; } // NOLINT |
|
|
|
int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; } |
|
|
|
struct SumOf5Functor { |
|
int operator()(int a, int b, int c, int d, int e) { |
|
return a + b + c + d + e; |
|
} |
|
}; |
|
|
|
std::string Concat5(const char* s1, const char* s2, const char* s3, |
|
const char* s4, const char* s5) { |
|
return std::string(s1) + s2 + s3 + s4 + s5; |
|
} |
|
|
|
int SumOf6(int a, int b, int c, int d, int e, int f) { |
|
return a + b + c + d + e + f; |
|
} |
|
|
|
struct SumOf6Functor { |
|
int operator()(int a, int b, int c, int d, int e, int f) { |
|
return a + b + c + d + e + f; |
|
} |
|
}; |
|
|
|
std::string Concat6(const char* s1, const char* s2, const char* s3, |
|
const char* s4, const char* s5, const char* s6) { |
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6; |
|
} |
|
|
|
std::string Concat7(const char* s1, const char* s2, const char* s3, |
|
const char* s4, const char* s5, const char* s6, |
|
const char* s7) { |
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7; |
|
} |
|
|
|
std::string Concat8(const char* s1, const char* s2, const char* s3, |
|
const char* s4, const char* s5, const char* s6, |
|
const char* s7, const char* s8) { |
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8; |
|
} |
|
|
|
std::string Concat9(const char* s1, const char* s2, const char* s3, |
|
const char* s4, const char* s5, const char* s6, |
|
const char* s7, const char* s8, const char* s9) { |
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9; |
|
} |
|
|
|
std::string Concat10(const char* s1, const char* s2, const char* s3, |
|
const char* s4, const char* s5, const char* s6, |
|
const char* s7, const char* s8, const char* s9, |
|
const char* s10) { |
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10; |
|
} |
|
|
|
// A helper that turns the type of a C-string literal from const |
|
// char[N] to const char*. |
|
inline const char* CharPtr(const char* s) { return s; } |
|
|
|
// Tests InvokeArgument<N>(...). |
|
|
|
// Tests using InvokeArgument with a nullary function. |
|
TEST(InvokeArgumentTest, Function0) { |
|
Action<int(int, int(*)())> a = InvokeArgument<1>(); // NOLINT |
|
EXPECT_EQ(1, a.Perform(std::make_tuple(2, &Nullary))); |
|
} |
|
|
|
// Tests using InvokeArgument with a unary function. |
|
TEST(InvokeArgumentTest, Functor1) { |
|
Action<int(UnaryFunctor)> a = InvokeArgument<0>(true); // NOLINT |
|
EXPECT_EQ(1, a.Perform(std::make_tuple(UnaryFunctor()))); |
|
} |
|
|
|
// Tests using InvokeArgument with a 5-ary function. |
|
TEST(InvokeArgumentTest, Function5) { |
|
Action<int(int(*)(int, int, int, int, int))> a = // NOLINT |
|
InvokeArgument<0>(10000, 2000, 300, 40, 5); |
|
EXPECT_EQ(12345, a.Perform(std::make_tuple(&SumOf5))); |
|
} |
|
|
|
// Tests using InvokeArgument with a 5-ary functor. |
|
TEST(InvokeArgumentTest, Functor5) { |
|
Action<int(SumOf5Functor)> a = // NOLINT |
|
InvokeArgument<0>(10000, 2000, 300, 40, 5); |
|
EXPECT_EQ(12345, a.Perform(std::make_tuple(SumOf5Functor()))); |
|
} |
|
|
|
// Tests using InvokeArgument with a 6-ary function. |
|
TEST(InvokeArgumentTest, Function6) { |
|
Action<int(int(*)(int, int, int, int, int, int))> a = // NOLINT |
|
InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6); |
|
EXPECT_EQ(123456, a.Perform(std::make_tuple(&SumOf6))); |
|
} |
|
|
|
// Tests using InvokeArgument with a 6-ary functor. |
|
TEST(InvokeArgumentTest, Functor6) { |
|
Action<int(SumOf6Functor)> a = // NOLINT |
|
InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6); |
|
EXPECT_EQ(123456, a.Perform(std::make_tuple(SumOf6Functor()))); |
|
} |
|
|
|
// Tests using InvokeArgument with a 7-ary function. |
|
TEST(InvokeArgumentTest, Function7) { |
|
Action<std::string(std::string(*)(const char*, const char*, const char*, |
|
const char*, const char*, const char*, |
|
const char*))> |
|
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7"); |
|
EXPECT_EQ("1234567", a.Perform(std::make_tuple(&Concat7))); |
|
} |
|
|
|
// Tests using InvokeArgument with a 8-ary function. |
|
TEST(InvokeArgumentTest, Function8) { |
|
Action<std::string(std::string(*)(const char*, const char*, const char*, |
|
const char*, const char*, const char*, |
|
const char*, const char*))> |
|
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8"); |
|
EXPECT_EQ("12345678", a.Perform(std::make_tuple(&Concat8))); |
|
} |
|
|
|
// Tests using InvokeArgument with a 9-ary function. |
|
TEST(InvokeArgumentTest, Function9) { |
|
Action<std::string(std::string(*)(const char*, const char*, const char*, |
|
const char*, const char*, const char*, |
|
const char*, const char*, const char*))> |
|
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9"); |
|
EXPECT_EQ("123456789", a.Perform(std::make_tuple(&Concat9))); |
|
} |
|
|
|
// Tests using InvokeArgument with a 10-ary function. |
|
TEST(InvokeArgumentTest, Function10) { |
|
Action<std::string(std::string(*)( |
|
const char*, const char*, const char*, const char*, const char*, |
|
const char*, const char*, const char*, const char*, const char*))> |
|
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9", "0"); |
|
EXPECT_EQ("1234567890", a.Perform(std::make_tuple(&Concat10))); |
|
} |
|
|
|
// Tests using InvokeArgument with a function that takes a pointer argument. |
|
TEST(InvokeArgumentTest, ByPointerFunction) { |
|
Action<const char*(const char*(*)(const char* input, short n))> a = // NOLINT |
|
InvokeArgument<0>(static_cast<const char*>("Hi"), Short(1)); |
|
EXPECT_STREQ("i", a.Perform(std::make_tuple(&Binary))); |
|
} |
|
|
|
// Tests using InvokeArgument with a function that takes a const char* |
|
// by passing it a C-string literal. |
|
TEST(InvokeArgumentTest, FunctionWithCStringLiteral) { |
|
Action<const char*(const char*(*)(const char* input, short n))> a = // NOLINT |
|
InvokeArgument<0>("Hi", Short(1)); |
|
EXPECT_STREQ("i", a.Perform(std::make_tuple(&Binary))); |
|
} |
|
|
|
// Tests using InvokeArgument with a function that takes a const reference. |
|
TEST(InvokeArgumentTest, ByConstReferenceFunction) { |
|
Action<bool(bool (*function)(const std::string& s))> a = // NOLINT |
|
InvokeArgument<0>(std::string("Hi")); |
|
// When action 'a' is constructed, it makes a copy of the temporary |
|
// string object passed to it, so it's OK to use 'a' later, when the |
|
// temporary object has already died. |
|
EXPECT_TRUE(a.Perform(std::make_tuple(&ByConstRef))); |
|
} |
|
|
|
// Tests using InvokeArgument with ByRef() and a function that takes a |
|
// const reference. |
|
TEST(InvokeArgumentTest, ByExplicitConstReferenceFunction) { |
|
Action<bool(bool(*)(const double& x))> a = // NOLINT |
|
InvokeArgument<0>(ByRef(g_double)); |
|
// The above line calls ByRef() on a const value. |
|
EXPECT_TRUE(a.Perform(std::make_tuple(&ReferencesGlobalDouble))); |
|
|
|
double x = 0; |
|
a = InvokeArgument<0>(ByRef(x)); // This calls ByRef() on a non-const. |
|
EXPECT_FALSE(a.Perform(std::make_tuple(&ReferencesGlobalDouble))); |
|
} |
|
|
|
// Tests DoAll(a1, a2). |
|
TEST(DoAllTest, TwoActions) { |
|
int n = 0; |
|
Action<int(int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT |
|
Return(2)); |
|
EXPECT_EQ(2, a.Perform(std::make_tuple(&n))); |
|
EXPECT_EQ(1, n); |
|
} |
|
|
|
// Tests DoAll(a1, a2, a3). |
|
TEST(DoAllTest, ThreeActions) { |
|
int m = 0, n = 0; |
|
Action<int(int*, int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT |
|
SetArgPointee<1>(2), |
|
Return(3)); |
|
EXPECT_EQ(3, a.Perform(std::make_tuple(&m, &n))); |
|
EXPECT_EQ(1, m); |
|
EXPECT_EQ(2, n); |
|
} |
|
|
|
// Tests DoAll(a1, a2, a3, a4). |
|
TEST(DoAllTest, FourActions) { |
|
int m = 0, n = 0; |
|
char ch = '\0'; |
|
Action<int(int*, int*, char*)> a = // NOLINT |
|
DoAll(SetArgPointee<0>(1), |
|
SetArgPointee<1>(2), |
|
SetArgPointee<2>('a'), |
|
Return(3)); |
|
EXPECT_EQ(3, a.Perform(std::make_tuple(&m, &n, &ch))); |
|
EXPECT_EQ(1, m); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('a', ch); |
|
} |
|
|
|
// Tests DoAll(a1, a2, a3, a4, a5). |
|
TEST(DoAllTest, FiveActions) { |
|
int m = 0, n = 0; |
|
char a = '\0', b = '\0'; |
|
Action<int(int*, int*, char*, char*)> action = // NOLINT |
|
DoAll(SetArgPointee<0>(1), |
|
SetArgPointee<1>(2), |
|
SetArgPointee<2>('a'), |
|
SetArgPointee<3>('b'), |
|
Return(3)); |
|
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b))); |
|
EXPECT_EQ(1, m); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('a', a); |
|
EXPECT_EQ('b', b); |
|
} |
|
|
|
// Tests DoAll(a1, a2, ..., a6). |
|
TEST(DoAllTest, SixActions) { |
|
int m = 0, n = 0; |
|
char a = '\0', b = '\0', c = '\0'; |
|
Action<int(int*, int*, char*, char*, char*)> action = // NOLINT |
|
DoAll(SetArgPointee<0>(1), |
|
SetArgPointee<1>(2), |
|
SetArgPointee<2>('a'), |
|
SetArgPointee<3>('b'), |
|
SetArgPointee<4>('c'), |
|
Return(3)); |
|
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c))); |
|
EXPECT_EQ(1, m); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('a', a); |
|
EXPECT_EQ('b', b); |
|
EXPECT_EQ('c', c); |
|
} |
|
|
|
// Tests DoAll(a1, a2, ..., a7). |
|
TEST(DoAllTest, SevenActions) { |
|
int m = 0, n = 0; |
|
char a = '\0', b = '\0', c = '\0', d = '\0'; |
|
Action<int(int*, int*, char*, char*, char*, char*)> action = // NOLINT |
|
DoAll(SetArgPointee<0>(1), |
|
SetArgPointee<1>(2), |
|
SetArgPointee<2>('a'), |
|
SetArgPointee<3>('b'), |
|
SetArgPointee<4>('c'), |
|
SetArgPointee<5>('d'), |
|
Return(3)); |
|
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d))); |
|
EXPECT_EQ(1, m); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('a', a); |
|
EXPECT_EQ('b', b); |
|
EXPECT_EQ('c', c); |
|
EXPECT_EQ('d', d); |
|
} |
|
|
|
// Tests DoAll(a1, a2, ..., a8). |
|
TEST(DoAllTest, EightActions) { |
|
int m = 0, n = 0; |
|
char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0'; |
|
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT |
|
char*)> action = |
|
DoAll(SetArgPointee<0>(1), |
|
SetArgPointee<1>(2), |
|
SetArgPointee<2>('a'), |
|
SetArgPointee<3>('b'), |
|
SetArgPointee<4>('c'), |
|
SetArgPointee<5>('d'), |
|
SetArgPointee<6>('e'), |
|
Return(3)); |
|
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e))); |
|
EXPECT_EQ(1, m); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('a', a); |
|
EXPECT_EQ('b', b); |
|
EXPECT_EQ('c', c); |
|
EXPECT_EQ('d', d); |
|
EXPECT_EQ('e', e); |
|
} |
|
|
|
// Tests DoAll(a1, a2, ..., a9). |
|
TEST(DoAllTest, NineActions) { |
|
int m = 0, n = 0; |
|
char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0', f = '\0'; |
|
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT |
|
char*, char*)> action = |
|
DoAll(SetArgPointee<0>(1), |
|
SetArgPointee<1>(2), |
|
SetArgPointee<2>('a'), |
|
SetArgPointee<3>('b'), |
|
SetArgPointee<4>('c'), |
|
SetArgPointee<5>('d'), |
|
SetArgPointee<6>('e'), |
|
SetArgPointee<7>('f'), |
|
Return(3)); |
|
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e, &f))); |
|
EXPECT_EQ(1, m); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('a', a); |
|
EXPECT_EQ('b', b); |
|
EXPECT_EQ('c', c); |
|
EXPECT_EQ('d', d); |
|
EXPECT_EQ('e', e); |
|
EXPECT_EQ('f', f); |
|
} |
|
|
|
// Tests DoAll(a1, a2, ..., a10). |
|
TEST(DoAllTest, TenActions) { |
|
int m = 0, n = 0; |
|
char a = '\0', b = '\0', c = '\0', d = '\0'; |
|
char e = '\0', f = '\0', g = '\0'; |
|
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT |
|
char*, char*, char*)> action = |
|
DoAll(SetArgPointee<0>(1), |
|
SetArgPointee<1>(2), |
|
SetArgPointee<2>('a'), |
|
SetArgPointee<3>('b'), |
|
SetArgPointee<4>('c'), |
|
SetArgPointee<5>('d'), |
|
SetArgPointee<6>('e'), |
|
SetArgPointee<7>('f'), |
|
SetArgPointee<8>('g'), |
|
Return(3)); |
|
EXPECT_EQ( |
|
3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e, &f, &g))); |
|
EXPECT_EQ(1, m); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('a', a); |
|
EXPECT_EQ('b', b); |
|
EXPECT_EQ('c', c); |
|
EXPECT_EQ('d', d); |
|
EXPECT_EQ('e', e); |
|
EXPECT_EQ('f', f); |
|
EXPECT_EQ('g', g); |
|
} |
|
|
|
// The ACTION*() macros trigger warning C4100 (unreferenced formal |
|
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in |
|
// the macro definition, as the warnings are generated when the macro |
|
// is expanded and macro expansion cannot contain #pragma. Therefore |
|
// we suppress them here. |
|
// Also suppress C4503 decorated name length exceeded, name was truncated |
|
#ifdef _MSC_VER |
|
# pragma warning(push) |
|
# pragma warning(disable:4100) |
|
# pragma warning(disable:4503) |
|
#endif |
|
// Tests the ACTION*() macro family. |
|
|
|
// Tests that ACTION() can define an action that doesn't reference the |
|
// mock function arguments. |
|
ACTION(Return5) { return 5; } |
|
|
|
TEST(ActionMacroTest, WorksWhenNotReferencingArguments) { |
|
Action<double()> a1 = Return5(); |
|
EXPECT_DOUBLE_EQ(5, a1.Perform(std::make_tuple())); |
|
|
|
Action<int(double, bool)> a2 = Return5(); |
|
EXPECT_EQ(5, a2.Perform(std::make_tuple(1, true))); |
|
} |
|
|
|
// Tests that ACTION() can define an action that returns void. |
|
ACTION(IncrementArg1) { (*arg1)++; } |
|
|
|
TEST(ActionMacroTest, WorksWhenReturningVoid) { |
|
Action<void(int, int*)> a1 = IncrementArg1(); |
|
int n = 0; |
|
a1.Perform(std::make_tuple(5, &n)); |
|
EXPECT_EQ(1, n); |
|
} |
|
|
|
// Tests that the body of ACTION() can reference the type of the |
|
// argument. |
|
ACTION(IncrementArg2) { |
|
StaticAssertTypeEq<int*, arg2_type>(); |
|
arg2_type temp = arg2; |
|
(*temp)++; |
|
} |
|
|
|
TEST(ActionMacroTest, CanReferenceArgumentType) { |
|
Action<void(int, bool, int*)> a1 = IncrementArg2(); |
|
int n = 0; |
|
a1.Perform(std::make_tuple(5, false, &n)); |
|
EXPECT_EQ(1, n); |
|
} |
|
|
|
// Tests that the body of ACTION() can reference the argument tuple |
|
// via args_type and args. |
|
ACTION(Sum2) { |
|
StaticAssertTypeEq<std::tuple<int, char, int*>, args_type>(); |
|
args_type args_copy = args; |
|
return std::get<0>(args_copy) + std::get<1>(args_copy); |
|
} |
|
|
|
TEST(ActionMacroTest, CanReferenceArgumentTuple) { |
|
Action<int(int, char, int*)> a1 = Sum2(); |
|
int dummy = 0; |
|
EXPECT_EQ(11, a1.Perform(std::make_tuple(5, Char(6), &dummy))); |
|
} |
|
|
|
// Tests that the body of ACTION() can reference the mock function |
|
// type. |
|
int Dummy(bool flag) { return flag? 1 : 0; } |
|
|
|
ACTION(InvokeDummy) { |
|
StaticAssertTypeEq<int(bool), function_type>(); |
|
function_type* fp = &Dummy; |
|
return (*fp)(true); |
|
} |
|
|
|
TEST(ActionMacroTest, CanReferenceMockFunctionType) { |
|
Action<int(bool)> a1 = InvokeDummy(); |
|
EXPECT_EQ(1, a1.Perform(std::make_tuple(true))); |
|
EXPECT_EQ(1, a1.Perform(std::make_tuple(false))); |
|
} |
|
|
|
// Tests that the body of ACTION() can reference the mock function's |
|
// return type. |
|
ACTION(InvokeDummy2) { |
|
StaticAssertTypeEq<int, return_type>(); |
|
return_type result = Dummy(true); |
|
return result; |
|
} |
|
|
|
TEST(ActionMacroTest, CanReferenceMockFunctionReturnType) { |
|
Action<int(bool)> a1 = InvokeDummy2(); |
|
EXPECT_EQ(1, a1.Perform(std::make_tuple(true))); |
|
EXPECT_EQ(1, a1.Perform(std::make_tuple(false))); |
|
} |
|
|
|
// Tests that ACTION() works for arguments passed by const reference. |
|
ACTION(ReturnAddrOfConstBoolReferenceArg) { |
|
StaticAssertTypeEq<const bool&, arg1_type>(); |
|
return &arg1; |
|
} |
|
|
|
TEST(ActionMacroTest, WorksForConstReferenceArg) { |
|
Action<const bool*(int, const bool&)> a = ReturnAddrOfConstBoolReferenceArg(); |
|
const bool b = false; |
|
EXPECT_EQ(&b, a.Perform(std::tuple<int, const bool&>(0, b))); |
|
} |
|
|
|
// Tests that ACTION() works for arguments passed by non-const reference. |
|
ACTION(ReturnAddrOfIntReferenceArg) { |
|
StaticAssertTypeEq<int&, arg0_type>(); |
|
return &arg0; |
|
} |
|
|
|
TEST(ActionMacroTest, WorksForNonConstReferenceArg) { |
|
Action<int*(int&, bool, int)> a = ReturnAddrOfIntReferenceArg(); |
|
int n = 0; |
|
EXPECT_EQ(&n, a.Perform(std::tuple<int&, bool, int>(n, true, 1))); |
|
} |
|
|
|
// Tests that ACTION() can be used in a namespace. |
|
namespace action_test { |
|
ACTION(Sum) { return arg0 + arg1; } |
|
} // namespace action_test |
|
|
|
TEST(ActionMacroTest, WorksInNamespace) { |
|
Action<int(int, int)> a1 = action_test::Sum(); |
|
EXPECT_EQ(3, a1.Perform(std::make_tuple(1, 2))); |
|
} |
|
|
|
// Tests that the same ACTION definition works for mock functions with |
|
// different argument numbers. |
|
ACTION(PlusTwo) { return arg0 + 2; } |
|
|
|
TEST(ActionMacroTest, WorksForDifferentArgumentNumbers) { |
|
Action<int(int)> a1 = PlusTwo(); |
|
EXPECT_EQ(4, a1.Perform(std::make_tuple(2))); |
|
|
|
Action<double(float, void*)> a2 = PlusTwo(); |
|
int dummy; |
|
EXPECT_DOUBLE_EQ(6, a2.Perform(std::make_tuple(4.0f, &dummy))); |
|
} |
|
|
|
// Tests that ACTION_P can define a parameterized action. |
|
ACTION_P(Plus, n) { return arg0 + n; } |
|
|
|
TEST(ActionPMacroTest, DefinesParameterizedAction) { |
|
Action<int(int m, bool t)> a1 = Plus(9); |
|
EXPECT_EQ(10, a1.Perform(std::make_tuple(1, true))); |
|
} |
|
|
|
// Tests that the body of ACTION_P can reference the argument types |
|
// and the parameter type. |
|
ACTION_P(TypedPlus, n) { |
|
arg0_type t1 = arg0; |
|
n_type t2 = n; |
|
return t1 + t2; |
|
} |
|
|
|
TEST(ActionPMacroTest, CanReferenceArgumentAndParameterTypes) { |
|
Action<int(char m, bool t)> a1 = TypedPlus(9); |
|
EXPECT_EQ(10, a1.Perform(std::make_tuple(Char(1), true))); |
|
} |
|
|
|
// Tests that a parameterized action can be used in any mock function |
|
// whose type is compatible. |
|
TEST(ActionPMacroTest, WorksInCompatibleMockFunction) { |
|
Action<std::string(const std::string& s)> a1 = Plus("tail"); |
|
const std::string re = "re"; |
|
std::tuple<const std::string> dummy = std::make_tuple(re); |
|
EXPECT_EQ("retail", a1.Perform(dummy)); |
|
} |
|
|
|
// Tests that we can use ACTION*() to define actions overloaded on the |
|
// number of parameters. |
|
|
|
ACTION(OverloadedAction) { return arg0 ? arg1 : "hello"; } |
|
|
|
ACTION_P(OverloadedAction, default_value) { |
|
return arg0 ? arg1 : default_value; |
|
} |
|
|
|
ACTION_P2(OverloadedAction, true_value, false_value) { |
|
return arg0 ? true_value : false_value; |
|
} |
|
|
|
TEST(ActionMacroTest, CanDefineOverloadedActions) { |
|
typedef Action<const char*(bool, const char*)> MyAction; |
|
|
|
const MyAction a1 = OverloadedAction(); |
|
EXPECT_STREQ("hello", a1.Perform(std::make_tuple(false, CharPtr("world")))); |
|
EXPECT_STREQ("world", a1.Perform(std::make_tuple(true, CharPtr("world")))); |
|
|
|
const MyAction a2 = OverloadedAction("hi"); |
|
EXPECT_STREQ("hi", a2.Perform(std::make_tuple(false, CharPtr("world")))); |
|
EXPECT_STREQ("world", a2.Perform(std::make_tuple(true, CharPtr("world")))); |
|
|
|
const MyAction a3 = OverloadedAction("hi", "you"); |
|
EXPECT_STREQ("hi", a3.Perform(std::make_tuple(true, CharPtr("world")))); |
|
EXPECT_STREQ("you", a3.Perform(std::make_tuple(false, CharPtr("world")))); |
|
} |
|
|
|
// Tests ACTION_Pn where n >= 3. |
|
|
|
ACTION_P3(Plus, m, n, k) { return arg0 + m + n + k; } |
|
|
|
TEST(ActionPnMacroTest, WorksFor3Parameters) { |
|
Action<double(int m, bool t)> a1 = Plus(100, 20, 3.4); |
|
EXPECT_DOUBLE_EQ(3123.4, a1.Perform(std::make_tuple(3000, true))); |
|
|
|
Action<std::string(const std::string& s)> a2 = Plus("tail", "-", ">"); |
|
const std::string re = "re"; |
|
std::tuple<const std::string> dummy = std::make_tuple(re); |
|
EXPECT_EQ("retail->", a2.Perform(dummy)); |
|
} |
|
|
|
ACTION_P4(Plus, p0, p1, p2, p3) { return arg0 + p0 + p1 + p2 + p3; } |
|
|
|
TEST(ActionPnMacroTest, WorksFor4Parameters) { |
|
Action<int(int)> a1 = Plus(1, 2, 3, 4); |
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4, a1.Perform(std::make_tuple(10))); |
|
} |
|
|
|
ACTION_P5(Plus, p0, p1, p2, p3, p4) { return arg0 + p0 + p1 + p2 + p3 + p4; } |
|
|
|
TEST(ActionPnMacroTest, WorksFor5Parameters) { |
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5); |
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5, a1.Perform(std::make_tuple(10))); |
|
} |
|
|
|
ACTION_P6(Plus, p0, p1, p2, p3, p4, p5) { |
|
return arg0 + p0 + p1 + p2 + p3 + p4 + p5; |
|
} |
|
|
|
TEST(ActionPnMacroTest, WorksFor6Parameters) { |
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6); |
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6, a1.Perform(std::make_tuple(10))); |
|
} |
|
|
|
ACTION_P7(Plus, p0, p1, p2, p3, p4, p5, p6) { |
|
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6; |
|
} |
|
|
|
TEST(ActionPnMacroTest, WorksFor7Parameters) { |
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7); |
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7, a1.Perform(std::make_tuple(10))); |
|
} |
|
|
|
ACTION_P8(Plus, p0, p1, p2, p3, p4, p5, p6, p7) { |
|
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7; |
|
} |
|
|
|
TEST(ActionPnMacroTest, WorksFor8Parameters) { |
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8); |
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, |
|
a1.Perform(std::make_tuple(10))); |
|
} |
|
|
|
ACTION_P9(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8) { |
|
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8; |
|
} |
|
|
|
TEST(ActionPnMacroTest, WorksFor9Parameters) { |
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9); |
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, |
|
a1.Perform(std::make_tuple(10))); |
|
} |
|
|
|
ACTION_P10(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8, last_param) { |
|
arg0_type t0 = arg0; |
|
last_param_type t9 = last_param; |
|
return t0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + t9; |
|
} |
|
|
|
TEST(ActionPnMacroTest, WorksFor10Parameters) { |
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); |
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, |
|
a1.Perform(std::make_tuple(10))); |
|
} |
|
|
|
// Tests that the action body can promote the parameter types. |
|
|
|
ACTION_P2(PadArgument, prefix, suffix) { |
|
// The following lines promote the two parameters to desired types. |
|
std::string prefix_str(prefix); |
|
char suffix_char = static_cast<char>(suffix); |
|
return prefix_str + arg0 + suffix_char; |
|
} |
|
|
|
TEST(ActionPnMacroTest, SimpleTypePromotion) { |
|
Action<std::string(const char*)> no_promo = |
|
PadArgument(std::string("foo"), 'r'); |
|
Action<std::string(const char*)> promo = |
|
PadArgument("foo", static_cast<int>('r')); |
|
EXPECT_EQ("foobar", no_promo.Perform(std::make_tuple(CharPtr("ba")))); |
|
EXPECT_EQ("foobar", promo.Perform(std::make_tuple(CharPtr("ba")))); |
|
} |
|
|
|
// Tests that we can partially restrict parameter types using a |
|
// straight-forward pattern. |
|
|
|
// Defines a generic action that doesn't restrict the types of its |
|
// parameters. |
|
ACTION_P3(ConcatImpl, a, b, c) { |
|
std::stringstream ss; |
|
ss << a << b << c; |
|
return ss.str(); |
|
} |
|
|
|
// Next, we try to restrict that either the first parameter is a |
|
// string, or the second parameter is an int. |
|
|
|
// Defines a partially specialized wrapper that restricts the first |
|
// parameter to std::string. |
|
template <typename T1, typename T2> |
|
// ConcatImplActionP3 is the class template ACTION_P3 uses to |
|
// implement ConcatImpl. We shouldn't change the name as this |
|
// pattern requires the user to use it directly. |
|
ConcatImplActionP3<std::string, T1, T2> |
|
Concat(const std::string& a, T1 b, T2 c) { |
|
GTEST_INTENTIONAL_CONST_COND_PUSH_() |
|
if (true) { |
|
GTEST_INTENTIONAL_CONST_COND_POP_() |
|
// This branch verifies that ConcatImpl() can be invoked without |
|
// explicit template arguments. |
|
return ConcatImpl(a, b, c); |
|
} else { |
|
// This branch verifies that ConcatImpl() can also be invoked with |
|
// explicit template arguments. It doesn't really need to be |
|
// executed as this is a compile-time verification. |
|
return ConcatImpl<std::string, T1, T2>(a, b, c); |
|
} |
|
} |
|
|
|
// Defines another partially specialized wrapper that restricts the |
|
// second parameter to int. |
|
template <typename T1, typename T2> |
|
ConcatImplActionP3<T1, int, T2> |
|
Concat(T1 a, int b, T2 c) { |
|
return ConcatImpl(a, b, c); |
|
} |
|
|
|
TEST(ActionPnMacroTest, CanPartiallyRestrictParameterTypes) { |
|
Action<const std::string()> a1 = Concat("Hello", "1", 2); |
|
EXPECT_EQ("Hello12", a1.Perform(std::make_tuple())); |
|
|
|
a1 = Concat(1, 2, 3); |
|
EXPECT_EQ("123", a1.Perform(std::make_tuple())); |
|
} |
|
|
|
// Verifies the type of an ACTION*. |
|
|
|
ACTION(DoFoo) {} |
|
ACTION_P(DoFoo, p) {} |
|
ACTION_P2(DoFoo, p0, p1) {} |
|
|
|
TEST(ActionPnMacroTest, TypesAreCorrect) { |
|
// DoFoo() must be assignable to a DoFooAction variable. |
|
DoFooAction a0 = DoFoo(); |
|
|
|
// DoFoo(1) must be assignable to a DoFooActionP variable. |
|
DoFooActionP<int> a1 = DoFoo(1); |
|
|
|
// DoFoo(p1, ..., pk) must be assignable to a DoFooActionPk |
|
// variable, and so on. |
|
DoFooActionP2<int, char> a2 = DoFoo(1, '2'); |
|
PlusActionP3<int, int, char> a3 = Plus(1, 2, '3'); |
|
PlusActionP4<int, int, int, char> a4 = Plus(1, 2, 3, '4'); |
|
PlusActionP5<int, int, int, int, char> a5 = Plus(1, 2, 3, 4, '5'); |
|
PlusActionP6<int, int, int, int, int, char> a6 = Plus(1, 2, 3, 4, 5, '6'); |
|
PlusActionP7<int, int, int, int, int, int, char> a7 = |
|
Plus(1, 2, 3, 4, 5, 6, '7'); |
|
PlusActionP8<int, int, int, int, int, int, int, char> a8 = |
|
Plus(1, 2, 3, 4, 5, 6, 7, '8'); |
|
PlusActionP9<int, int, int, int, int, int, int, int, char> a9 = |
|
Plus(1, 2, 3, 4, 5, 6, 7, 8, '9'); |
|
PlusActionP10<int, int, int, int, int, int, int, int, int, char> a10 = |
|
Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); |
|
|
|
// Avoid "unused variable" warnings. |
|
(void)a0; |
|
(void)a1; |
|
(void)a2; |
|
(void)a3; |
|
(void)a4; |
|
(void)a5; |
|
(void)a6; |
|
(void)a7; |
|
(void)a8; |
|
(void)a9; |
|
(void)a10; |
|
} |
|
|
|
// Tests that an ACTION_P*() action can be explicitly instantiated |
|
// with reference-typed parameters. |
|
|
|
ACTION_P(Plus1, x) { return x; } |
|
ACTION_P2(Plus2, x, y) { return x + y; } |
|
ACTION_P3(Plus3, x, y, z) { return x + y + z; } |
|
ACTION_P10(Plus10, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) { |
|
return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9; |
|
} |
|
|
|
TEST(ActionPnMacroTest, CanExplicitlyInstantiateWithReferenceTypes) { |
|
int x = 1, y = 2, z = 3; |
|
const std::tuple<> empty = std::make_tuple(); |
|
|
|
Action<int()> a = Plus1<int&>(x); |
|
EXPECT_EQ(1, a.Perform(empty)); |
|
|
|
a = Plus2<const int&, int&>(x, y); |
|
EXPECT_EQ(3, a.Perform(empty)); |
|
|
|
a = Plus3<int&, const int&, int&>(x, y, z); |
|
EXPECT_EQ(6, a.Perform(empty)); |
|
|
|
int n[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; |
|
a = Plus10<const int&, int&, const int&, int&, const int&, int&, const int&, |
|
int&, const int&, int&>(n[0], n[1], n[2], n[3], n[4], n[5], n[6], n[7], |
|
n[8], n[9]); |
|
EXPECT_EQ(55, a.Perform(empty)); |
|
} |
|
|
|
class NullaryConstructorClass { |
|
public: |
|
NullaryConstructorClass() : value_(123) {} |
|
int value_; |
|
}; |
|
|
|
// Tests using ReturnNew() with a nullary constructor. |
|
TEST(ReturnNewTest, NoArgs) { |
|
Action<NullaryConstructorClass*()> a = ReturnNew<NullaryConstructorClass>(); |
|
NullaryConstructorClass* c = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(123, c->value_); |
|
delete c; |
|
} |
|
|
|
class UnaryConstructorClass { |
|
public: |
|
explicit UnaryConstructorClass(int value) : value_(value) {} |
|
int value_; |
|
}; |
|
|
|
// Tests using ReturnNew() with a unary constructor. |
|
TEST(ReturnNewTest, Unary) { |
|
Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000); |
|
UnaryConstructorClass* c = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(4000, c->value_); |
|
delete c; |
|
} |
|
|
|
TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) { |
|
Action<UnaryConstructorClass*(bool, int)> a = |
|
ReturnNew<UnaryConstructorClass>(4000); |
|
UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5)); |
|
EXPECT_EQ(4000, c->value_); |
|
delete c; |
|
} |
|
|
|
TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) { |
|
Action<const UnaryConstructorClass*()> a = |
|
ReturnNew<UnaryConstructorClass>(4000); |
|
const UnaryConstructorClass* c = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(4000, c->value_); |
|
delete c; |
|
} |
|
|
|
class TenArgConstructorClass { |
|
public: |
|
TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, |
|
int a6, int a7, int a8, int a9, int a10) |
|
: value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) { |
|
} |
|
int value_; |
|
}; |
|
|
|
// Tests using ReturnNew() with a 10-argument constructor. |
|
TEST(ReturnNewTest, ConstructorThatTakes10Arguments) { |
|
Action<TenArgConstructorClass*()> a = |
|
ReturnNew<TenArgConstructorClass>(1000000000, 200000000, 30000000, |
|
4000000, 500000, 60000, |
|
7000, 800, 90, 0); |
|
TenArgConstructorClass* c = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(1234567890, c->value_); |
|
delete c; |
|
} |
|
|
|
// Tests that ACTION_TEMPLATE works when there is no value parameter. |
|
ACTION_TEMPLATE(CreateNew, |
|
HAS_1_TEMPLATE_PARAMS(typename, T), |
|
AND_0_VALUE_PARAMS()) { |
|
return new T; |
|
} |
|
|
|
TEST(ActionTemplateTest, WorksWithoutValueParam) { |
|
const Action<int*()> a = CreateNew<int>(); |
|
int* p = a.Perform(std::make_tuple()); |
|
delete p; |
|
} |
|
|
|
// Tests that ACTION_TEMPLATE works when there are value parameters. |
|
ACTION_TEMPLATE(CreateNew, |
|
HAS_1_TEMPLATE_PARAMS(typename, T), |
|
AND_1_VALUE_PARAMS(a0)) { |
|
return new T(a0); |
|
} |
|
|
|
TEST(ActionTemplateTest, WorksWithValueParams) { |
|
const Action<int*()> a = CreateNew<int>(42); |
|
int* p = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(42, *p); |
|
delete p; |
|
} |
|
|
|
// Tests that ACTION_TEMPLATE works for integral template parameters. |
|
ACTION_TEMPLATE(MyDeleteArg, |
|
HAS_1_TEMPLATE_PARAMS(int, k), |
|
AND_0_VALUE_PARAMS()) { |
|
delete std::get<k>(args); |
|
} |
|
|
|
// Resets a bool variable in the destructor. |
|
class BoolResetter { |
|
public: |
|
explicit BoolResetter(bool* value) : value_(value) {} |
|
~BoolResetter() { *value_ = false; } |
|
private: |
|
bool* value_; |
|
}; |
|
|
|
TEST(ActionTemplateTest, WorksForIntegralTemplateParams) { |
|
const Action<void(int*, BoolResetter*)> a = MyDeleteArg<1>(); |
|
int n = 0; |
|
bool b = true; |
|
BoolResetter* resetter = new BoolResetter(&b); |
|
a.Perform(std::make_tuple(&n, resetter)); |
|
EXPECT_FALSE(b); // Verifies that resetter is deleted. |
|
} |
|
|
|
// Tests that ACTION_TEMPLATES works for template template parameters. |
|
ACTION_TEMPLATE(ReturnSmartPointer, |
|
HAS_1_TEMPLATE_PARAMS(template <typename Pointee> class, |
|
Pointer), |
|
AND_1_VALUE_PARAMS(pointee)) { |
|
return Pointer<pointee_type>(new pointee_type(pointee)); |
|
} |
|
|
|
TEST(ActionTemplateTest, WorksForTemplateTemplateParameters) { |
|
const Action<std::shared_ptr<int>()> a = |
|
ReturnSmartPointer<std::shared_ptr>(42); |
|
std::shared_ptr<int> p = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(42, *p); |
|
} |
|
|
|
// Tests that ACTION_TEMPLATE works for 10 template parameters. |
|
template <typename T1, typename T2, typename T3, int k4, bool k5, |
|
unsigned int k6, typename T7, typename T8, typename T9> |
|
struct GiantTemplate { |
|
public: |
|
explicit GiantTemplate(int a_value) : value(a_value) {} |
|
int value; |
|
}; |
|
|
|
ACTION_TEMPLATE(ReturnGiant, |
|
HAS_10_TEMPLATE_PARAMS( |
|
typename, T1, |
|
typename, T2, |
|
typename, T3, |
|
int, k4, |
|
bool, k5, |
|
unsigned int, k6, |
|
class, T7, |
|
class, T8, |
|
class, T9, |
|
template <typename T> class, T10), |
|
AND_1_VALUE_PARAMS(value)) { |
|
return GiantTemplate<T10<T1>, T2, T3, k4, k5, k6, T7, T8, T9>(value); |
|
} |
|
|
|
TEST(ActionTemplateTest, WorksFor10TemplateParameters) { |
|
using Giant = GiantTemplate<std::shared_ptr<int>, bool, double, 5, true, 6, |
|
char, unsigned, int>; |
|
const Action<Giant()> a = ReturnGiant<int, bool, double, 5, true, 6, char, |
|
unsigned, int, std::shared_ptr>(42); |
|
Giant giant = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(42, giant.value); |
|
} |
|
|
|
// Tests that ACTION_TEMPLATE works for 10 value parameters. |
|
ACTION_TEMPLATE(ReturnSum, |
|
HAS_1_TEMPLATE_PARAMS(typename, Number), |
|
AND_10_VALUE_PARAMS(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)) { |
|
return static_cast<Number>(v1) + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10; |
|
} |
|
|
|
TEST(ActionTemplateTest, WorksFor10ValueParameters) { |
|
const Action<int()> a = ReturnSum<int>(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); |
|
EXPECT_EQ(55, a.Perform(std::make_tuple())); |
|
} |
|
|
|
// Tests that ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded |
|
// on the number of value parameters. |
|
|
|
ACTION(ReturnSum) { return 0; } |
|
|
|
ACTION_P(ReturnSum, x) { return x; } |
|
|
|
ACTION_TEMPLATE(ReturnSum, |
|
HAS_1_TEMPLATE_PARAMS(typename, Number), |
|
AND_2_VALUE_PARAMS(v1, v2)) { |
|
return static_cast<Number>(v1) + v2; |
|
} |
|
|
|
ACTION_TEMPLATE(ReturnSum, |
|
HAS_1_TEMPLATE_PARAMS(typename, Number), |
|
AND_3_VALUE_PARAMS(v1, v2, v3)) { |
|
return static_cast<Number>(v1) + v2 + v3; |
|
} |
|
|
|
ACTION_TEMPLATE(ReturnSum, |
|
HAS_2_TEMPLATE_PARAMS(typename, Number, int, k), |
|
AND_4_VALUE_PARAMS(v1, v2, v3, v4)) { |
|
return static_cast<Number>(v1) + v2 + v3 + v4 + k; |
|
} |
|
|
|
TEST(ActionTemplateTest, CanBeOverloadedOnNumberOfValueParameters) { |
|
const Action<int()> a0 = ReturnSum(); |
|
const Action<int()> a1 = ReturnSum(1); |
|
const Action<int()> a2 = ReturnSum<int>(1, 2); |
|
const Action<int()> a3 = ReturnSum<int>(1, 2, 3); |
|
const Action<int()> a4 = ReturnSum<int, 10000>(2000, 300, 40, 5); |
|
EXPECT_EQ(0, a0.Perform(std::make_tuple())); |
|
EXPECT_EQ(1, a1.Perform(std::make_tuple())); |
|
EXPECT_EQ(3, a2.Perform(std::make_tuple())); |
|
EXPECT_EQ(6, a3.Perform(std::make_tuple())); |
|
EXPECT_EQ(12345, a4.Perform(std::make_tuple())); |
|
} |
|
|
|
|
|
} // namespace gmock_generated_actions_test |
|
} // namespace testing
|
|
|