You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
5.9 KiB
193 lines
5.9 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/random/internal/distribution_test_util.h" |
|
|
|
#include "gtest/gtest.h" |
|
|
|
namespace { |
|
|
|
TEST(TestUtil, InverseErf) { |
|
const struct { |
|
const double z; |
|
const double value; |
|
} kErfInvTable[] = { |
|
{0.0000001, 8.86227e-8}, |
|
{0.00001, 8.86227e-6}, |
|
{0.5, 0.4769362762044}, |
|
{0.6, 0.5951160814499}, |
|
{0.99999, 3.1234132743}, |
|
{0.9999999, 3.7665625816}, |
|
{0.999999944, 3.8403850690566985}, // = log((1-x) * (1+x)) =~ 16.004 |
|
{0.999999999, 4.3200053849134452}, |
|
}; |
|
|
|
for (const auto& data : kErfInvTable) { |
|
auto value = absl::random_internal::erfinv(data.z); |
|
|
|
// Log using the Wolfram-alpha function name & parameters. |
|
EXPECT_NEAR(value, data.value, 1e-8) |
|
<< " InverseErf[" << data.z << "] (expected=" << data.value << ") -> " |
|
<< value; |
|
} |
|
} |
|
|
|
const struct { |
|
const double p; |
|
const double q; |
|
const double x; |
|
const double alpha; |
|
} kBetaTable[] = { |
|
{0.5, 0.5, 0.01, 0.06376856085851985}, |
|
{0.5, 0.5, 0.1, 0.2048327646991335}, |
|
{0.5, 0.5, 1, 1}, |
|
{1, 0.5, 0, 0}, |
|
{1, 0.5, 0.01, 0.005012562893380045}, |
|
{1, 0.5, 0.1, 0.0513167019494862}, |
|
{1, 0.5, 0.5, 0.2928932188134525}, |
|
{1, 1, 0.5, 0.5}, |
|
{2, 2, 0.1, 0.028}, |
|
{2, 2, 0.2, 0.104}, |
|
{2, 2, 0.3, 0.216}, |
|
{2, 2, 0.4, 0.352}, |
|
{2, 2, 0.5, 0.5}, |
|
{2, 2, 0.6, 0.648}, |
|
{2, 2, 0.7, 0.784}, |
|
{2, 2, 0.8, 0.896}, |
|
{2, 2, 0.9, 0.972}, |
|
{5.5, 5, 0.5, 0.4361908850559777}, |
|
{10, 0.5, 0.9, 0.1516409096346979}, |
|
{10, 5, 0.5, 0.08978271484375}, |
|
{10, 5, 1, 1}, |
|
{10, 10, 0.5, 0.5}, |
|
{20, 5, 0.8, 0.4598773297575791}, |
|
{20, 10, 0.6, 0.2146816102371739}, |
|
{20, 10, 0.8, 0.9507364826957875}, |
|
{20, 20, 0.5, 0.5}, |
|
{20, 20, 0.6, 0.8979413687105918}, |
|
{30, 10, 0.7, 0.2241297491808366}, |
|
{30, 10, 0.8, 0.7586405487192086}, |
|
{40, 20, 0.7, 0.7001783247477069}, |
|
{1, 0.5, 0.1, 0.0513167019494862}, |
|
{1, 0.5, 0.2, 0.1055728090000841}, |
|
{1, 0.5, 0.3, 0.1633399734659245}, |
|
{1, 0.5, 0.4, 0.2254033307585166}, |
|
{1, 2, 0.2, 0.36}, |
|
{1, 3, 0.2, 0.488}, |
|
{1, 4, 0.2, 0.5904}, |
|
{1, 5, 0.2, 0.67232}, |
|
{2, 2, 0.3, 0.216}, |
|
{3, 2, 0.3, 0.0837}, |
|
{4, 2, 0.3, 0.03078}, |
|
{5, 2, 0.3, 0.010935}, |
|
|
|
// These values test small & large points along the range of the Beta |
|
// function. |
|
// |
|
// When selecting test points, remember that if BetaIncomplete(x, p, q) |
|
// returns the same value to within the limits of precision over a large |
|
// domain of the input, x, then BetaIncompleteInv(alpha, p, q) may return an |
|
// essentially arbitrary value where BetaIncomplete(x, p, q) =~ alpha. |
|
|
|
// BetaRegularized[x, 0.00001, 0.00001], |
|
// For x in {~0.001 ... ~0.999}, => ~0.5 |
|
{1e-5, 1e-5, 1e-5, 0.4999424388184638311}, |
|
{1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964}, |
|
|
|
// BetaRegularized[x, 0.00001, 10000]. |
|
// For x in {~epsilon ... 1.0}, => ~1 |
|
{1e-5, 1e5, 1e-6, 0.9999817708130066936}, |
|
{1e-5, 1e5, (1.0 - 1e-7), 1.0}, |
|
|
|
// BetaRegularized[x, 10000, 0.00001]. |
|
// For x in {0 .. 1-epsilon}, => ~0 |
|
{1e5, 1e-5, 1e-6, 0}, |
|
{1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5}, |
|
}; |
|
|
|
TEST(BetaTest, BetaIncomplete) { |
|
for (const auto& data : kBetaTable) { |
|
auto value = absl::random_internal::BetaIncomplete(data.x, data.p, data.q); |
|
|
|
// Log using the Wolfram-alpha function name & parameters. |
|
EXPECT_NEAR(value, data.alpha, 1e-12) |
|
<< " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q |
|
<< "] (expected=" << data.alpha << ") -> " << value; |
|
} |
|
} |
|
|
|
TEST(BetaTest, BetaIncompleteInv) { |
|
for (const auto& data : kBetaTable) { |
|
auto value = |
|
absl::random_internal::BetaIncompleteInv(data.p, data.q, data.alpha); |
|
|
|
// Log using the Wolfram-alpha function name & parameters. |
|
EXPECT_NEAR(value, data.x, 1e-6) |
|
<< " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", " |
|
<< data.q << "] (expected=" << data.x << ") -> " << value; |
|
} |
|
} |
|
|
|
TEST(MaxErrorTolerance, MaxErrorTolerance) { |
|
std::vector<std::pair<double, double>> cases = { |
|
{0.0000001, 8.86227e-8 * 1.41421356237}, |
|
{0.00001, 8.86227e-6 * 1.41421356237}, |
|
{0.5, 0.4769362762044 * 1.41421356237}, |
|
{0.6, 0.5951160814499 * 1.41421356237}, |
|
{0.99999, 3.1234132743 * 1.41421356237}, |
|
{0.9999999, 3.7665625816 * 1.41421356237}, |
|
{0.999999944, 3.8403850690566985 * 1.41421356237}, |
|
{0.999999999, 4.3200053849134452 * 1.41421356237}}; |
|
for (auto entry : cases) { |
|
EXPECT_NEAR(absl::random_internal::MaxErrorTolerance(entry.first), |
|
entry.second, 1e-8); |
|
} |
|
} |
|
|
|
TEST(ZScore, WithSameMean) { |
|
absl::random_internal::DistributionMoments m; |
|
m.n = 100; |
|
m.mean = 5; |
|
m.variance = 1; |
|
EXPECT_NEAR(absl::random_internal::ZScore(5, m), 0, 1e-12); |
|
|
|
m.n = 1; |
|
m.mean = 0; |
|
m.variance = 1; |
|
EXPECT_NEAR(absl::random_internal::ZScore(0, m), 0, 1e-12); |
|
|
|
m.n = 10000; |
|
m.mean = -5; |
|
m.variance = 100; |
|
EXPECT_NEAR(absl::random_internal::ZScore(-5, m), 0, 1e-12); |
|
} |
|
|
|
TEST(ZScore, DifferentMean) { |
|
absl::random_internal::DistributionMoments m; |
|
m.n = 100; |
|
m.mean = 5; |
|
m.variance = 1; |
|
EXPECT_NEAR(absl::random_internal::ZScore(4, m), 10, 1e-12); |
|
|
|
m.n = 1; |
|
m.mean = 0; |
|
m.variance = 1; |
|
EXPECT_NEAR(absl::random_internal::ZScore(-1, m), 1, 1e-12); |
|
|
|
m.n = 10000; |
|
m.mean = -5; |
|
m.variance = 100; |
|
EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12); |
|
} |
|
} // namespace
|
|
|