|
|
|
|
|
|
|
#include "benchmark/benchmark.h"
|
|
|
|
|
|
|
|
#define BASIC_BENCHMARK_TEST(x) BENCHMARK(x)->Arg(8)->Arg(512)->Arg(8192)
|
|
|
|
|
|
|
|
void BM_empty(benchmark::State& state) {
|
|
|
|
for (auto _ : state) {
|
|
|
|
benchmark::DoNotOptimize(state.iterations());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BENCHMARK(BM_empty);
|
|
|
|
BENCHMARK(BM_empty)->ThreadPerCpu();
|
|
|
|
|
|
|
|
void BM_spin_empty(benchmark::State& state) {
|
|
|
|
for (auto _ : state) {
|
|
|
|
for (int x = 0; x < state.range(0); ++x) {
|
|
|
|
benchmark::DoNotOptimize(x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_empty);
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_empty)->ThreadPerCpu();
|
|
|
|
|
|
|
|
void BM_spin_pause_before(benchmark::State& state) {
|
|
|
|
for (int i = 0; i < state.range(0); ++i) {
|
|
|
|
benchmark::DoNotOptimize(i);
|
|
|
|
}
|
|
|
|
for (auto _ : state) {
|
|
|
|
for (int i = 0; i < state.range(0); ++i) {
|
|
|
|
benchmark::DoNotOptimize(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_pause_before);
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_pause_before)->ThreadPerCpu();
|
|
|
|
|
|
|
|
void BM_spin_pause_during(benchmark::State& state) {
|
|
|
|
for (auto _ : state) {
|
|
|
|
state.PauseTiming();
|
|
|
|
for (int i = 0; i < state.range(0); ++i) {
|
|
|
|
benchmark::DoNotOptimize(i);
|
|
|
|
}
|
|
|
|
state.ResumeTiming();
|
|
|
|
for (int i = 0; i < state.range(0); ++i) {
|
|
|
|
benchmark::DoNotOptimize(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_pause_during);
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_pause_during)->ThreadPerCpu();
|
|
|
|
|
|
|
|
void BM_pause_during(benchmark::State& state) {
|
|
|
|
for (auto _ : state) {
|
|
|
|
state.PauseTiming();
|
|
|
|
state.ResumeTiming();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BENCHMARK(BM_pause_during);
|
|
|
|
BENCHMARK(BM_pause_during)->ThreadPerCpu();
|
|
|
|
BENCHMARK(BM_pause_during)->UseRealTime();
|
|
|
|
BENCHMARK(BM_pause_during)->UseRealTime()->ThreadPerCpu();
|
|
|
|
|
|
|
|
void BM_spin_pause_after(benchmark::State& state) {
|
|
|
|
for (auto _ : state) {
|
|
|
|
for (int i = 0; i < state.range(0); ++i) {
|
|
|
|
benchmark::DoNotOptimize(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int i = 0; i < state.range(0); ++i) {
|
|
|
|
benchmark::DoNotOptimize(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_pause_after);
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_pause_after)->ThreadPerCpu();
|
|
|
|
|
|
|
|
void BM_spin_pause_before_and_after(benchmark::State& state) {
|
|
|
|
for (int i = 0; i < state.range(0); ++i) {
|
|
|
|
benchmark::DoNotOptimize(i);
|
|
|
|
}
|
|
|
|
for (auto _ : state) {
|
|
|
|
for (int i = 0; i < state.range(0); ++i) {
|
|
|
|
benchmark::DoNotOptimize(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int i = 0; i < state.range(0); ++i) {
|
|
|
|
benchmark::DoNotOptimize(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after);
|
|
|
|
BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after)->ThreadPerCpu();
|
|
|
|
|
|
|
|
void BM_empty_stop_start(benchmark::State& state) {
|
|
|
|
for (auto _ : state) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BENCHMARK(BM_empty_stop_start);
|
|
|
|
BENCHMARK(BM_empty_stop_start)->ThreadPerCpu();
|
|
|
|
|
|
|
|
|
|
|
|
void BM_KeepRunning(benchmark::State& state) {
|
|
|
|
benchmark::IterationCount iter_count = 0;
|
|
|
|
assert(iter_count == state.iterations());
|
|
|
|
while (state.KeepRunning()) {
|
|
|
|
++iter_count;
|
|
|
|
}
|
|
|
|
assert(iter_count == state.iterations());
|
|
|
|
}
|
|
|
|
BENCHMARK(BM_KeepRunning);
|
|
|
|
|
|
|
|
void BM_KeepRunningBatch(benchmark::State& state) {
|
|
|
|
// Choose a batch size >1000 to skip the typical runs with iteration
|
|
|
|
// targets of 10, 100 and 1000. If these are not actually skipped the
|
|
|
|
// bug would be detectable as consecutive runs with the same iteration
|
|
|
|
// count. Below we assert that this does not happen.
|
|
|
|
const benchmark::IterationCount batch_size = 1009;
|
|
|
|
|
|
|
|
static benchmark::IterationCount prior_iter_count = 0;
|
|
|
|
benchmark::IterationCount iter_count = 0;
|
|
|
|
while (state.KeepRunningBatch(batch_size)) {
|
|
|
|
iter_count += batch_size;
|
|
|
|
}
|
|
|
|
assert(state.iterations() == iter_count);
|
|
|
|
|
|
|
|
// Verify that the iteration count always increases across runs (see
|
|
|
|
// comment above).
|
|
|
|
assert(iter_count == batch_size // max_iterations == 1
|
|
|
|
|| iter_count > prior_iter_count); // max_iterations > batch_size
|
|
|
|
prior_iter_count = iter_count;
|
|
|
|
}
|
|
|
|
// Register with a fixed repetition count to establish the invariant that
|
|
|
|
// the iteration count should always change across runs. This overrides
|
|
|
|
// the --benchmark_repetitions command line flag, which would otherwise
|
|
|
|
// cause this test to fail if set > 1.
|
|
|
|
BENCHMARK(BM_KeepRunningBatch)->Repetitions(1);
|
|
|
|
|
|
|
|
void BM_RangedFor(benchmark::State& state) {
|
|
|
|
benchmark::IterationCount iter_count = 0;
|
|
|
|
for (auto _ : state) {
|
|
|
|
++iter_count;
|
|
|
|
}
|
|
|
|
assert(iter_count == state.max_iterations);
|
|
|
|
}
|
|
|
|
BENCHMARK(BM_RangedFor);
|
|
|
|
|
|
|
|
// Ensure that StateIterator provides all the necessary typedefs required to
|
|
|
|
// instantiate std::iterator_traits.
|
|
|
|
static_assert(std::is_same<
|
|
|
|
typename std::iterator_traits<benchmark::State::StateIterator>::value_type,
|
|
|
|
typename benchmark::State::StateIterator::value_type>::value, "");
|
|
|
|
|
|
|
|
BENCHMARK_MAIN();
|