You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
300 lines
11 KiB
300 lines
11 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle import ParamAttr |
|
from paddle.nn.initializer import Constant |
|
|
|
from paddlers.models.ppdet.core.workspace import register, serializable |
|
from paddlers.models.ppdet.modeling.layers import ConvNormLayer |
|
from ..shape_spec import ShapeSpec |
|
|
|
__all__ = ['BiFPN'] |
|
|
|
|
|
class SeparableConvLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels=None, |
|
kernel_size=3, |
|
norm_type='bn', |
|
norm_groups=32, |
|
act='swish'): |
|
super(SeparableConvLayer, self).__init__() |
|
assert norm_type in ['bn', 'sync_bn', 'gn', None] |
|
assert act in ['swish', 'relu', None] |
|
|
|
self.in_channels = in_channels |
|
if out_channels is None: |
|
self.out_channels = self.in_channels |
|
self.norm_type = norm_type |
|
self.norm_groups = norm_groups |
|
self.depthwise_conv = nn.Conv2D( |
|
in_channels, |
|
in_channels, |
|
kernel_size, |
|
padding=kernel_size // 2, |
|
groups=in_channels, |
|
bias_attr=False) |
|
self.pointwise_conv = nn.Conv2D(in_channels, self.out_channels, 1) |
|
|
|
# norm type |
|
if self.norm_type in ['bn', 'sync_bn']: |
|
self.norm = nn.BatchNorm2D(self.out_channels) |
|
elif self.norm_type == 'gn': |
|
self.norm = nn.GroupNorm( |
|
num_groups=self.norm_groups, num_channels=self.out_channels) |
|
|
|
# activation |
|
if act == 'swish': |
|
self.act = nn.Swish() |
|
elif act == 'relu': |
|
self.act = nn.ReLU() |
|
|
|
def forward(self, x): |
|
if self.act is not None: |
|
x = self.act(x) |
|
out = self.depthwise_conv(x) |
|
out = self.pointwise_conv(out) |
|
if self.norm_type is not None: |
|
out = self.norm(out) |
|
return out |
|
|
|
|
|
class BiFPNCell(nn.Layer): |
|
def __init__(self, |
|
channels=256, |
|
num_levels=5, |
|
eps=1e-5, |
|
use_weighted_fusion=True, |
|
kernel_size=3, |
|
norm_type='bn', |
|
norm_groups=32, |
|
act='swish'): |
|
super(BiFPNCell, self).__init__() |
|
self.channels = channels |
|
self.num_levels = num_levels |
|
self.eps = eps |
|
self.use_weighted_fusion = use_weighted_fusion |
|
|
|
# up |
|
self.conv_up = nn.LayerList([ |
|
SeparableConvLayer( |
|
self.channels, |
|
kernel_size=kernel_size, |
|
norm_type=norm_type, |
|
norm_groups=norm_groups, |
|
act=act) for _ in range(self.num_levels - 1) |
|
]) |
|
# down |
|
self.conv_down = nn.LayerList([ |
|
SeparableConvLayer( |
|
self.channels, |
|
kernel_size=kernel_size, |
|
norm_type=norm_type, |
|
norm_groups=norm_groups, |
|
act=act) for _ in range(self.num_levels - 1) |
|
]) |
|
|
|
if self.use_weighted_fusion: |
|
self.up_weights = self.create_parameter( |
|
shape=[self.num_levels - 1, 2], |
|
attr=ParamAttr(initializer=Constant(1.))) |
|
self.down_weights = self.create_parameter( |
|
shape=[self.num_levels - 1, 3], |
|
attr=ParamAttr(initializer=Constant(1.))) |
|
|
|
def _feature_fusion_cell(self, |
|
conv_layer, |
|
lateral_feat, |
|
sampling_feat, |
|
route_feat=None, |
|
weights=None): |
|
if self.use_weighted_fusion: |
|
weights = F.relu(weights) |
|
weights = weights / (weights.sum() + self.eps) |
|
if route_feat is not None: |
|
out_feat = weights[0] * lateral_feat + \ |
|
weights[1] * sampling_feat + \ |
|
weights[2] * route_feat |
|
else: |
|
out_feat = weights[0] * lateral_feat + \ |
|
weights[1] * sampling_feat |
|
else: |
|
if route_feat is not None: |
|
out_feat = lateral_feat + sampling_feat + route_feat |
|
else: |
|
out_feat = lateral_feat + sampling_feat |
|
|
|
out_feat = conv_layer(out_feat) |
|
return out_feat |
|
|
|
def forward(self, feats): |
|
# feats: [P3 - P7] |
|
lateral_feats = [] |
|
|
|
# up |
|
up_feature = feats[-1] |
|
for i, feature in enumerate(feats[::-1]): |
|
if i == 0: |
|
lateral_feats.append(feature) |
|
else: |
|
shape = paddle.shape(feature) |
|
up_feature = F.interpolate( |
|
up_feature, size=[shape[2], shape[3]]) |
|
lateral_feature = self._feature_fusion_cell( |
|
self.conv_up[i - 1], |
|
feature, |
|
up_feature, |
|
weights=self.up_weights[i - 1] |
|
if self.use_weighted_fusion else None) |
|
lateral_feats.append(lateral_feature) |
|
up_feature = lateral_feature |
|
|
|
out_feats = [] |
|
# down |
|
down_feature = lateral_feats[-1] |
|
for i, (lateral_feature, |
|
route_feature) in enumerate(zip(lateral_feats[::-1], feats)): |
|
if i == 0: |
|
out_feats.append(lateral_feature) |
|
else: |
|
down_feature = F.max_pool2d(down_feature, 3, 2, 1) |
|
if i == len(feats) - 1: |
|
route_feature = None |
|
weights = self.down_weights[ |
|
i - 1][:2] if self.use_weighted_fusion else None |
|
else: |
|
weights = self.down_weights[ |
|
i - 1] if self.use_weighted_fusion else None |
|
out_feature = self._feature_fusion_cell( |
|
self.conv_down[i - 1], |
|
lateral_feature, |
|
down_feature, |
|
route_feature, |
|
weights=weights) |
|
out_feats.append(out_feature) |
|
down_feature = out_feature |
|
|
|
return out_feats |
|
|
|
|
|
@register |
|
@serializable |
|
class BiFPN(nn.Layer): |
|
""" |
|
Bidirectional Feature Pyramid Network, see https://arxiv.org/abs/1911.09070 |
|
|
|
Args: |
|
in_channels (list[int]): input channels of each level which can be |
|
derived from the output shape of backbone by from_config. |
|
out_channel (int): output channel of each level. |
|
num_extra_levels (int): the number of extra stages added to the last level. |
|
default: 2 |
|
fpn_strides (List): The stride of each level. |
|
num_stacks (int): the number of stacks for BiFPN, default: 1. |
|
use_weighted_fusion (bool): use weighted feature fusion in BiFPN, default: True. |
|
norm_type (string|None): the normalization type in BiFPN module. If |
|
norm_type is None, norm will not be used after conv and if |
|
norm_type is string, bn, gn, sync_bn are available. default: bn. |
|
norm_groups (int): if you use gn, set this param. |
|
act (string|None): the activation function of BiFPN. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels=(512, 1024, 2048), |
|
out_channel=256, |
|
num_extra_levels=2, |
|
fpn_strides=[8, 16, 32, 64, 128], |
|
num_stacks=1, |
|
use_weighted_fusion=True, |
|
norm_type='bn', |
|
norm_groups=32, |
|
act='swish'): |
|
super(BiFPN, self).__init__() |
|
assert num_stacks > 0, "The number of stacks of BiFPN is at least 1." |
|
assert norm_type in ['bn', 'sync_bn', 'gn', None] |
|
assert act in ['swish', 'relu', None] |
|
assert num_extra_levels >= 0, \ |
|
"The `num_extra_levels` must be non negative(>=0)." |
|
|
|
self.in_channels = in_channels |
|
self.out_channel = out_channel |
|
self.num_extra_levels = num_extra_levels |
|
self.num_stacks = num_stacks |
|
self.use_weighted_fusion = use_weighted_fusion |
|
self.norm_type = norm_type |
|
self.norm_groups = norm_groups |
|
self.act = act |
|
self.num_levels = len(self.in_channels) + self.num_extra_levels |
|
if len(fpn_strides) != self.num_levels: |
|
for i in range(self.num_extra_levels): |
|
fpn_strides += [fpn_strides[-1] * 2] |
|
self.fpn_strides = fpn_strides |
|
|
|
self.lateral_convs = nn.LayerList() |
|
for in_c in in_channels: |
|
self.lateral_convs.append( |
|
ConvNormLayer(in_c, self.out_channel, 1, 1)) |
|
if self.num_extra_levels > 0: |
|
self.extra_convs = nn.LayerList() |
|
for i in range(self.num_extra_levels): |
|
if i == 0: |
|
self.extra_convs.append( |
|
ConvNormLayer(self.in_channels[-1], self.out_channel, 3, |
|
2)) |
|
else: |
|
self.extra_convs.append(nn.MaxPool2D(3, 2, 1)) |
|
|
|
self.bifpn_cells = nn.LayerList() |
|
for i in range(self.num_stacks): |
|
self.bifpn_cells.append( |
|
BiFPNCell( |
|
self.out_channel, |
|
self.num_levels, |
|
use_weighted_fusion=self.use_weighted_fusion, |
|
norm_type=self.norm_type, |
|
norm_groups=self.norm_groups, |
|
act=self.act)) |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape): |
|
return { |
|
'in_channels': [i.channels for i in input_shape], |
|
'fpn_strides': [i.stride for i in input_shape] |
|
} |
|
|
|
@property |
|
def out_shape(self): |
|
return [ |
|
ShapeSpec( |
|
channels=self.out_channel, stride=s) for s in self.fpn_strides |
|
] |
|
|
|
def forward(self, feats): |
|
assert len(feats) == len(self.in_channels) |
|
fpn_feats = [] |
|
for conv_layer, feature in zip(self.lateral_convs, feats): |
|
fpn_feats.append(conv_layer(feature)) |
|
if self.num_extra_levels > 0: |
|
feat = feats[-1] |
|
for conv_layer in self.extra_convs: |
|
feat = conv_layer(feat) |
|
fpn_feats.append(feat) |
|
|
|
for bifpn_cell in self.bifpn_cells: |
|
fpn_feats = bifpn_cell(fpn_feats) |
|
return fpn_feats
|
|
|