You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
6.7 KiB
224 lines
6.7 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
from paddlers.models.ppdet.core.workspace import register |
|
from ..shape_spec import ShapeSpec |
|
|
|
__all__ = ['HarDNet'] |
|
|
|
|
|
def ConvLayer(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
bias_attr=False): |
|
layer = nn.Sequential( |
|
('conv', nn.Conv2D( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=kernel_size // 2, |
|
groups=1, |
|
bias_attr=bias_attr)), ('norm', nn.BatchNorm2D(out_channels)), |
|
('relu', nn.ReLU6())) |
|
return layer |
|
|
|
|
|
def DWConvLayer(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
bias_attr=False): |
|
layer = nn.Sequential( |
|
('dwconv', nn.Conv2D( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=1, |
|
groups=out_channels, |
|
bias_attr=bias_attr)), ('norm', nn.BatchNorm2D(out_channels))) |
|
return layer |
|
|
|
|
|
def CombConvLayer(in_channels, out_channels, kernel_size=1, stride=1): |
|
layer = nn.Sequential( |
|
('layer1', ConvLayer( |
|
in_channels, out_channels, kernel_size=kernel_size)), |
|
('layer2', DWConvLayer( |
|
out_channels, out_channels, stride=stride))) |
|
return layer |
|
|
|
|
|
class HarDBlock(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
growth_rate, |
|
grmul, |
|
n_layers, |
|
keepBase=False, |
|
residual_out=False, |
|
dwconv=False): |
|
super().__init__() |
|
self.keepBase = keepBase |
|
self.links = [] |
|
layers_ = [] |
|
self.out_channels = 0 |
|
for i in range(n_layers): |
|
outch, inch, link = self.get_link(i + 1, in_channels, growth_rate, |
|
grmul) |
|
self.links.append(link) |
|
if dwconv: |
|
layers_.append(CombConvLayer(inch, outch)) |
|
else: |
|
layers_.append(ConvLayer(inch, outch)) |
|
|
|
if (i % 2 == 0) or (i == n_layers - 1): |
|
self.out_channels += outch |
|
self.layers = nn.LayerList(layers_) |
|
|
|
def get_out_ch(self): |
|
return self.out_channels |
|
|
|
def get_link(self, layer, base_ch, growth_rate, grmul): |
|
if layer == 0: |
|
return base_ch, 0, [] |
|
out_channels = growth_rate |
|
|
|
link = [] |
|
for i in range(10): |
|
dv = 2**i |
|
if layer % dv == 0: |
|
k = layer - dv |
|
link.append(k) |
|
if i > 0: |
|
out_channels *= grmul |
|
|
|
out_channels = int(int(out_channels + 1) / 2) * 2 |
|
in_channels = 0 |
|
|
|
for i in link: |
|
ch, _, _ = self.get_link(i, base_ch, growth_rate, grmul) |
|
in_channels += ch |
|
|
|
return out_channels, in_channels, link |
|
|
|
def forward(self, x): |
|
layers_ = [x] |
|
|
|
for layer in range(len(self.layers)): |
|
link = self.links[layer] |
|
tin = [] |
|
for i in link: |
|
tin.append(layers_[i]) |
|
if len(tin) > 1: |
|
x = paddle.concat(tin, 1) |
|
else: |
|
x = tin[0] |
|
out = self.layers[layer](x) |
|
layers_.append(out) |
|
|
|
t = len(layers_) |
|
out_ = [] |
|
for i in range(t): |
|
if (i == 0 and self.keepBase) or (i == t - 1) or (i % 2 == 1): |
|
out_.append(layers_[i]) |
|
out = paddle.concat(out_, 1) |
|
|
|
return out |
|
|
|
|
|
@register |
|
class HarDNet(nn.Layer): |
|
def __init__(self, depth_wise=False, return_idx=[1, 3, 8, 13], arch=85): |
|
super(HarDNet, self).__init__() |
|
assert arch in [39, 68, 85], "HarDNet-{} not support.".format(arch) |
|
if arch == 85: |
|
first_ch = [48, 96] |
|
second_kernel = 3 |
|
ch_list = [192, 256, 320, 480, 720] |
|
grmul = 1.7 |
|
gr = [24, 24, 28, 36, 48] |
|
n_layers = [8, 16, 16, 16, 16] |
|
elif arch == 68: |
|
first_ch = [32, 64] |
|
second_kernel = 3 |
|
ch_list = [128, 256, 320, 640] |
|
grmul = 1.7 |
|
gr = [14, 16, 20, 40] |
|
n_layers = [8, 16, 16, 16] |
|
|
|
self.return_idx = return_idx |
|
self._out_channels = [96, 214, 458, 784] |
|
|
|
avg_pool = True |
|
if depth_wise: |
|
second_kernel = 1 |
|
avg_pool = False |
|
|
|
blks = len(n_layers) |
|
self.base = nn.LayerList([]) |
|
|
|
# First Layer: Standard Conv3x3, Stride=2 |
|
self.base.append( |
|
ConvLayer( |
|
in_channels=3, |
|
out_channels=first_ch[0], |
|
kernel_size=3, |
|
stride=2, |
|
bias_attr=False)) |
|
|
|
# Second Layer |
|
self.base.append( |
|
ConvLayer( |
|
first_ch[0], first_ch[1], kernel_size=second_kernel)) |
|
|
|
# Avgpooling or DWConv3x3 downsampling |
|
if avg_pool: |
|
self.base.append(nn.AvgPool2D(kernel_size=3, stride=2, padding=1)) |
|
else: |
|
self.base.append(DWConvLayer(first_ch[1], first_ch[1], stride=2)) |
|
|
|
# Build all HarDNet blocks |
|
ch = first_ch[1] |
|
for i in range(blks): |
|
blk = HarDBlock(ch, gr[i], grmul, n_layers[i], dwconv=depth_wise) |
|
ch = blk.out_channels |
|
self.base.append(blk) |
|
|
|
if i != blks - 1: |
|
self.base.append(ConvLayer(ch, ch_list[i], kernel_size=1)) |
|
ch = ch_list[i] |
|
if i == 0: |
|
self.base.append( |
|
nn.AvgPool2D( |
|
kernel_size=2, stride=2, ceil_mode=True)) |
|
elif i != blks - 1 and i != 1 and i != 3: |
|
self.base.append(nn.AvgPool2D(kernel_size=2, stride=2)) |
|
|
|
def forward(self, inputs): |
|
x = inputs['image'] |
|
outs = [] |
|
for i, layer in enumerate(self.base): |
|
x = layer(x) |
|
if i in self.return_idx: |
|
outs.append(x) |
|
return outs |
|
|
|
@property |
|
def out_shape(self): |
|
return [ShapeSpec(channels=self._out_channels[i]) for i in range(4)]
|
|
|