You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
243 lines
7.0 KiB
243 lines
7.0 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddlers.models.ppdet.core.workspace import register, serializable |
|
from paddlers.models.ppdet.modeling.layers import ConvNormLayer |
|
from ..shape_spec import ShapeSpec |
|
|
|
DLA_cfg = {34: ([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512])} |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
def __init__(self, ch_in, ch_out, stride=1): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = ConvNormLayer( |
|
ch_in, |
|
ch_out, |
|
filter_size=3, |
|
stride=stride, |
|
bias_on=False, |
|
norm_decay=None) |
|
self.conv2 = ConvNormLayer( |
|
ch_out, |
|
ch_out, |
|
filter_size=3, |
|
stride=1, |
|
bias_on=False, |
|
norm_decay=None) |
|
|
|
def forward(self, inputs, residual=None): |
|
if residual is None: |
|
residual = inputs |
|
|
|
out = self.conv1(inputs) |
|
out = F.relu(out) |
|
|
|
out = self.conv2(out) |
|
|
|
out = paddle.add(x=out, y=residual) |
|
out = F.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Root(nn.Layer): |
|
def __init__(self, ch_in, ch_out, kernel_size, residual): |
|
super(Root, self).__init__() |
|
self.conv = ConvNormLayer( |
|
ch_in, |
|
ch_out, |
|
filter_size=1, |
|
stride=1, |
|
bias_on=False, |
|
norm_decay=None) |
|
self.residual = residual |
|
|
|
def forward(self, inputs): |
|
children = inputs |
|
out = self.conv(paddle.concat(inputs, axis=1)) |
|
if self.residual: |
|
out = paddle.add(x=out, y=children[0]) |
|
out = F.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Tree(nn.Layer): |
|
def __init__(self, |
|
level, |
|
block, |
|
ch_in, |
|
ch_out, |
|
stride=1, |
|
level_root=False, |
|
root_dim=0, |
|
root_kernel_size=1, |
|
root_residual=False): |
|
super(Tree, self).__init__() |
|
if root_dim == 0: |
|
root_dim = 2 * ch_out |
|
if level_root: |
|
root_dim += ch_in |
|
if level == 1: |
|
self.tree1 = block(ch_in, ch_out, stride) |
|
self.tree2 = block(ch_out, ch_out, 1) |
|
else: |
|
self.tree1 = Tree( |
|
level - 1, |
|
block, |
|
ch_in, |
|
ch_out, |
|
stride, |
|
root_dim=0, |
|
root_kernel_size=root_kernel_size, |
|
root_residual=root_residual) |
|
self.tree2 = Tree( |
|
level - 1, |
|
block, |
|
ch_out, |
|
ch_out, |
|
1, |
|
root_dim=root_dim + ch_out, |
|
root_kernel_size=root_kernel_size, |
|
root_residual=root_residual) |
|
|
|
if level == 1: |
|
self.root = Root(root_dim, ch_out, root_kernel_size, root_residual) |
|
self.level_root = level_root |
|
self.root_dim = root_dim |
|
self.downsample = None |
|
self.project = None |
|
self.level = level |
|
if stride > 1: |
|
self.downsample = nn.MaxPool2D(stride, stride=stride) |
|
if ch_in != ch_out: |
|
self.project = ConvNormLayer( |
|
ch_in, |
|
ch_out, |
|
filter_size=1, |
|
stride=1, |
|
bias_on=False, |
|
norm_decay=None) |
|
|
|
def forward(self, x, residual=None, children=None): |
|
children = [] if children is None else children |
|
bottom = self.downsample(x) if self.downsample else x |
|
residual = self.project(bottom) if self.project else bottom |
|
if self.level_root: |
|
children.append(bottom) |
|
x1 = self.tree1(x, residual) |
|
if self.level == 1: |
|
x2 = self.tree2(x1) |
|
x = self.root([x2, x1] + children) |
|
else: |
|
children.append(x1) |
|
x = self.tree2(x1, children=children) |
|
return x |
|
|
|
|
|
@register |
|
@serializable |
|
class DLA(nn.Layer): |
|
""" |
|
DLA, see https://arxiv.org/pdf/1707.06484.pdf |
|
|
|
Args: |
|
depth (int): DLA depth, should be 34. |
|
residual_root (bool): whether use a reidual layer in the root block |
|
|
|
""" |
|
|
|
def __init__(self, depth=34, residual_root=False): |
|
super(DLA, self).__init__() |
|
levels, channels = DLA_cfg[depth] |
|
if depth == 34: |
|
block = BasicBlock |
|
self.channels = channels |
|
self.base_layer = nn.Sequential( |
|
ConvNormLayer( |
|
3, |
|
channels[0], |
|
filter_size=7, |
|
stride=1, |
|
bias_on=False, |
|
norm_decay=None), |
|
nn.ReLU()) |
|
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0]) |
|
self.level1 = self._make_conv_level( |
|
channels[0], channels[1], levels[1], stride=2) |
|
self.level2 = Tree( |
|
levels[2], |
|
block, |
|
channels[1], |
|
channels[2], |
|
2, |
|
level_root=False, |
|
root_residual=residual_root) |
|
self.level3 = Tree( |
|
levels[3], |
|
block, |
|
channels[2], |
|
channels[3], |
|
2, |
|
level_root=True, |
|
root_residual=residual_root) |
|
self.level4 = Tree( |
|
levels[4], |
|
block, |
|
channels[3], |
|
channels[4], |
|
2, |
|
level_root=True, |
|
root_residual=residual_root) |
|
self.level5 = Tree( |
|
levels[5], |
|
block, |
|
channels[4], |
|
channels[5], |
|
2, |
|
level_root=True, |
|
root_residual=residual_root) |
|
|
|
def _make_conv_level(self, ch_in, ch_out, conv_num, stride=1): |
|
modules = [] |
|
for i in range(conv_num): |
|
modules.extend([ |
|
ConvNormLayer( |
|
ch_in, |
|
ch_out, |
|
filter_size=3, |
|
stride=stride if i == 0 else 1, |
|
bias_on=False, |
|
norm_decay=None), nn.ReLU() |
|
]) |
|
ch_in = ch_out |
|
return nn.Sequential(*modules) |
|
|
|
@property |
|
def out_shape(self): |
|
return [ShapeSpec(channels=self.channels[i]) for i in range(6)] |
|
|
|
def forward(self, inputs): |
|
outs = [] |
|
im = inputs['image'] |
|
feats = self.base_layer(im) |
|
for i in range(6): |
|
feats = getattr(self, 'level{}'.format(i))(feats) |
|
outs.append(feats) |
|
|
|
return outs
|
|
|