You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
191 lines
6.7 KiB
191 lines
6.7 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import cv2 |
|
import json |
|
import copy |
|
import numpy as np |
|
|
|
try: |
|
from collections.abc import Sequence |
|
except Exception: |
|
from collections import Sequence |
|
|
|
from paddlers.models.ppdet.core.workspace import register, serializable |
|
from paddlers.models.ppdet.data.crop_utils.annotation_cropper import AnnoCropper |
|
from .coco import COCODataSet |
|
from .dataset import _make_dataset, _is_valid_file |
|
from paddlers.models.ppdet.utils.logger import setup_logger |
|
|
|
logger = setup_logger('sniper_coco_dataset') |
|
|
|
|
|
@register |
|
@serializable |
|
class SniperCOCODataSet(COCODataSet): |
|
"""SniperCOCODataSet""" |
|
|
|
def __init__(self, |
|
dataset_dir=None, |
|
image_dir=None, |
|
anno_path=None, |
|
proposals_file=None, |
|
data_fields=['image'], |
|
sample_num=-1, |
|
load_crowd=False, |
|
allow_empty=True, |
|
empty_ratio=1., |
|
is_trainset=True, |
|
image_target_sizes=[2000, 1000], |
|
valid_box_ratio_ranges=[[-1, 0.1], [0.08, -1]], |
|
chip_target_size=500, |
|
chip_target_stride=200, |
|
use_neg_chip=False, |
|
max_neg_num_per_im=8, |
|
max_per_img=-1, |
|
nms_thresh=0.5): |
|
super(SniperCOCODataSet, self).__init__( |
|
dataset_dir=dataset_dir, |
|
image_dir=image_dir, |
|
anno_path=anno_path, |
|
data_fields=data_fields, |
|
sample_num=sample_num, |
|
load_crowd=load_crowd, |
|
allow_empty=allow_empty, |
|
empty_ratio=empty_ratio) |
|
self.proposals_file = proposals_file |
|
self.proposals = None |
|
self.anno_cropper = None |
|
self.is_trainset = is_trainset |
|
self.image_target_sizes = image_target_sizes |
|
self.valid_box_ratio_ranges = valid_box_ratio_ranges |
|
self.chip_target_size = chip_target_size |
|
self.chip_target_stride = chip_target_stride |
|
self.use_neg_chip = use_neg_chip |
|
self.max_neg_num_per_im = max_neg_num_per_im |
|
self.max_per_img = max_per_img |
|
self.nms_thresh = nms_thresh |
|
|
|
def parse_dataset(self): |
|
if not hasattr(self, "roidbs"): |
|
super(SniperCOCODataSet, self).parse_dataset() |
|
if self.is_trainset: |
|
self._parse_proposals() |
|
self._merge_anno_proposals() |
|
self.ori_roidbs = copy.deepcopy(self.roidbs) |
|
self.init_anno_cropper() |
|
self.roidbs = self.generate_chips_roidbs(self.roidbs, self.is_trainset) |
|
|
|
def set_proposals_file(self, file_path): |
|
self.proposals_file = file_path |
|
|
|
def init_anno_cropper(self): |
|
logger.info("Init AnnoCropper...") |
|
self.anno_cropper = AnnoCropper( |
|
image_target_sizes=self.image_target_sizes, |
|
valid_box_ratio_ranges=self.valid_box_ratio_ranges, |
|
chip_target_size=self.chip_target_size, |
|
chip_target_stride=self.chip_target_stride, |
|
use_neg_chip=self.use_neg_chip, |
|
max_neg_num_per_im=self.max_neg_num_per_im, |
|
max_per_img=self.max_per_img, |
|
nms_thresh=self.nms_thresh) |
|
|
|
def generate_chips_roidbs(self, roidbs, is_trainset): |
|
if is_trainset: |
|
roidbs = self.anno_cropper.crop_anno_records(roidbs) |
|
else: |
|
roidbs = self.anno_cropper.crop_infer_anno_records(roidbs) |
|
return roidbs |
|
|
|
def _parse_proposals(self): |
|
if self.proposals_file: |
|
self.proposals = {} |
|
logger.info("Parse proposals file:{}".format(self.proposals_file)) |
|
with open(self.proposals_file, 'r') as f: |
|
proposals = json.load(f) |
|
for prop in proposals: |
|
image_id = prop["image_id"] |
|
if image_id not in self.proposals: |
|
self.proposals[image_id] = [] |
|
x, y, w, h = prop["bbox"] |
|
self.proposals[image_id].append([x, y, x + w, y + h]) |
|
|
|
def _merge_anno_proposals(self): |
|
assert self.roidbs |
|
if self.proposals and len(self.proposals.keys()) > 0: |
|
logger.info("merge proposals to annos") |
|
for id, record in enumerate(self.roidbs): |
|
image_id = int(record["im_id"]) |
|
if image_id not in self.proposals.keys(): |
|
logger.info("image id :{} no proposals".format(image_id)) |
|
record["proposals"] = np.array( |
|
self.proposals.get(image_id, []), dtype=np.float32) |
|
self.roidbs[id] = record |
|
|
|
def get_ori_roidbs(self): |
|
if not hasattr(self, "ori_roidbs"): |
|
return None |
|
return self.ori_roidbs |
|
|
|
def get_roidbs(self): |
|
if not hasattr(self, "roidbs"): |
|
self.parse_dataset() |
|
return self.roidbs |
|
|
|
def set_roidbs(self, roidbs): |
|
self.roidbs = roidbs |
|
|
|
def check_or_download_dataset(self): |
|
return |
|
|
|
def _parse(self): |
|
image_dir = self.image_dir |
|
if not isinstance(image_dir, Sequence): |
|
image_dir = [image_dir] |
|
images = [] |
|
for im_dir in image_dir: |
|
if os.path.isdir(im_dir): |
|
im_dir = os.path.join(self.dataset_dir, im_dir) |
|
images.extend(_make_dataset(im_dir)) |
|
elif os.path.isfile(im_dir) and _is_valid_file(im_dir): |
|
images.append(im_dir) |
|
return images |
|
|
|
def _load_images(self): |
|
images = self._parse() |
|
ct = 0 |
|
records = [] |
|
for image in images: |
|
assert image != '' and os.path.isfile(image), \ |
|
"Image {} not found".format(image) |
|
if self.sample_num > 0 and ct >= self.sample_num: |
|
break |
|
im = cv2.imread(image) |
|
h, w, c = im.shape |
|
rec = {'im_id': np.array([ct]), 'im_file': image, "h": h, "w": w} |
|
self._imid2path[ct] = image |
|
ct += 1 |
|
records.append(rec) |
|
assert len(records) > 0, "No image file found" |
|
return records |
|
|
|
def get_imid2path(self): |
|
return self._imid2path |
|
|
|
def set_images(self, images): |
|
self._imid2path = {} |
|
self.image_dir = images |
|
self.roidbs = self._load_images()
|
|
|