You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
6.5 KiB
197 lines
6.5 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import numpy as np |
|
|
|
try: |
|
from collections.abc import Sequence |
|
except Exception: |
|
from collections import Sequence |
|
from paddle.io import Dataset |
|
from paddlers.models.ppdet.core.workspace import register, serializable |
|
from paddlers.models.ppdet.utils.download import get_dataset_path |
|
import copy |
|
|
|
|
|
@serializable |
|
class DetDataset(Dataset): |
|
""" |
|
Load detection dataset. |
|
|
|
Args: |
|
dataset_dir (str): root directory for dataset. |
|
image_dir (str): directory for images. |
|
anno_path (str): annotation file path. |
|
data_fields (list): key name of data dictionary, at least have 'image'. |
|
sample_num (int): number of samples to load, -1 means all. |
|
use_default_label (bool): whether to load default label list. |
|
""" |
|
|
|
def __init__(self, |
|
dataset_dir=None, |
|
image_dir=None, |
|
anno_path=None, |
|
data_fields=['image'], |
|
sample_num=-1, |
|
use_default_label=None, |
|
**kwargs): |
|
super(DetDataset, self).__init__() |
|
self.dataset_dir = dataset_dir if dataset_dir is not None else '' |
|
self.anno_path = anno_path |
|
self.image_dir = image_dir if image_dir is not None else '' |
|
self.data_fields = data_fields |
|
self.sample_num = sample_num |
|
self.use_default_label = use_default_label |
|
self._epoch = 0 |
|
self._curr_iter = 0 |
|
|
|
def __len__(self, ): |
|
return len(self.roidbs) |
|
|
|
def __getitem__(self, idx): |
|
# data batch |
|
roidb = copy.deepcopy(self.roidbs[idx]) |
|
if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch: |
|
n = len(self.roidbs) |
|
idx = np.random.randint(n) |
|
roidb = [roidb, copy.deepcopy(self.roidbs[idx])] |
|
elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch: |
|
n = len(self.roidbs) |
|
idx = np.random.randint(n) |
|
roidb = [roidb, copy.deepcopy(self.roidbs[idx])] |
|
elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch: |
|
n = len(self.roidbs) |
|
roidb = [roidb, ] + [ |
|
copy.deepcopy(self.roidbs[np.random.randint(n)]) |
|
for _ in range(3) |
|
] |
|
if isinstance(roidb, Sequence): |
|
for r in roidb: |
|
r['curr_iter'] = self._curr_iter |
|
else: |
|
roidb['curr_iter'] = self._curr_iter |
|
self._curr_iter += 1 |
|
|
|
return self.transform(roidb) |
|
|
|
def check_or_download_dataset(self): |
|
self.dataset_dir = get_dataset_path(self.dataset_dir, self.anno_path, |
|
self.image_dir) |
|
|
|
def set_kwargs(self, **kwargs): |
|
self.mixup_epoch = kwargs.get('mixup_epoch', -1) |
|
self.cutmix_epoch = kwargs.get('cutmix_epoch', -1) |
|
self.mosaic_epoch = kwargs.get('mosaic_epoch', -1) |
|
|
|
def set_transform(self, transform): |
|
self.transform = transform |
|
|
|
def set_epoch(self, epoch_id): |
|
self._epoch = epoch_id |
|
|
|
def parse_dataset(self, ): |
|
raise NotImplementedError( |
|
"Need to implement parse_dataset method of Dataset") |
|
|
|
def get_anno(self): |
|
if self.anno_path is None: |
|
return |
|
return os.path.join(self.dataset_dir, self.anno_path) |
|
|
|
|
|
def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')): |
|
return f.lower().endswith(extensions) |
|
|
|
|
|
def _make_dataset(dir): |
|
dir = os.path.expanduser(dir) |
|
if not os.path.isdir(dir): |
|
raise ('{} should be a dir'.format(dir)) |
|
images = [] |
|
for root, _, fnames in sorted(os.walk(dir, followlinks=True)): |
|
for fname in sorted(fnames): |
|
path = os.path.join(root, fname) |
|
if _is_valid_file(path): |
|
images.append(path) |
|
return images |
|
|
|
|
|
@register |
|
@serializable |
|
class ImageFolder(DetDataset): |
|
def __init__(self, |
|
dataset_dir=None, |
|
image_dir=None, |
|
anno_path=None, |
|
sample_num=-1, |
|
use_default_label=None, |
|
**kwargs): |
|
super(ImageFolder, self).__init__( |
|
dataset_dir, |
|
image_dir, |
|
anno_path, |
|
sample_num=sample_num, |
|
use_default_label=use_default_label) |
|
self._imid2path = {} |
|
self.roidbs = None |
|
self.sample_num = sample_num |
|
|
|
def check_or_download_dataset(self): |
|
if self.dataset_dir: |
|
# NOTE: ImageFolder is only used for prediction, in |
|
# infer mode, image_dir is set by set_images |
|
# so we only check anno_path here |
|
self.dataset_dir = get_dataset_path(self.dataset_dir, |
|
self.anno_path, None) |
|
|
|
def parse_dataset(self, ): |
|
if not self.roidbs: |
|
self.roidbs = self._load_images() |
|
|
|
def _parse(self): |
|
image_dir = self.image_dir |
|
if not isinstance(image_dir, Sequence): |
|
image_dir = [image_dir] |
|
images = [] |
|
for im_dir in image_dir: |
|
if os.path.isdir(im_dir): |
|
im_dir = os.path.join(self.dataset_dir, im_dir) |
|
images.extend(_make_dataset(im_dir)) |
|
elif os.path.isfile(im_dir) and _is_valid_file(im_dir): |
|
images.append(im_dir) |
|
return images |
|
|
|
def _load_images(self): |
|
images = self._parse() |
|
ct = 0 |
|
records = [] |
|
for image in images: |
|
assert image != '' and os.path.isfile(image), \ |
|
"Image {} not found".format(image) |
|
if self.sample_num > 0 and ct >= self.sample_num: |
|
break |
|
rec = {'im_id': np.array([ct]), 'im_file': image} |
|
self._imid2path[ct] = image |
|
ct += 1 |
|
records.append(rec) |
|
assert len(records) > 0, "No image file found" |
|
return records |
|
|
|
def get_imid2path(self): |
|
return self._imid2path |
|
|
|
def set_images(self, images): |
|
self.image_dir = images |
|
self.roidbs = self._load_images()
|
|
|