You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

448 lines
14 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import numpy as np
from collections import OrderedDict
import paddle
import paddle.nn.functional as F
from paddle.distributed import fleet
from paddle.distributed.fleet import DistributedStrategy
# from ppcls.optimizer import OptimizerBuilder
# from ppcls.optimizer.learning_rate import LearningRateBuilder
from ppcls.arch import build_model
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.optimizer import build_lr_scheduler
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger, profiler
def create_feeds(image_shape, use_mix=False, class_num=None, dtype="float32"):
"""
Create feeds as model input
Args:
image_shape(list[int]): model input shape, such as [3, 224, 224]
use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
class_num(int): the class number of network, required if use_mix
Returns:
feeds(dict): dict of model input variables
"""
feeds = OrderedDict()
feeds['data'] = paddle.static.data(
name="data", shape=[None] + image_shape, dtype=dtype)
if use_mix:
if class_num is None:
msg = "When use MixUp, CutMix and so on, you must set class_num."
logger.error(msg)
raise Exception(msg)
feeds['target'] = paddle.static.data(
name="target", shape=[None, class_num], dtype="float32")
else:
feeds['label'] = paddle.static.data(
name="label", shape=[None, 1], dtype="int64")
return feeds
def create_fetchs(out,
feeds,
architecture,
topk=5,
epsilon=None,
class_num=None,
use_mix=False,
config=None,
mode="Train"):
"""
Create fetchs as model outputs(included loss and measures),
will call create_loss and create_metric(if use_mix).
Args:
out(variable): model output variable
feeds(dict): dict of model input variables.
If use mix_up, it will not include label.
architecture(dict): architecture information,
name(such as ResNet50) is needed
topk(int): usually top5
epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
class_num(int): the class number of network, required if use_mix
use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
config(dict): model config
Returns:
fetchs(dict): dict of model outputs(included loss and measures)
"""
fetchs = OrderedDict()
# build loss
if use_mix:
if class_num is None:
msg = "When use MixUp, CutMix and so on, you must set class_num."
logger.error(msg)
raise Exception(msg)
target = paddle.reshape(feeds['target'], [-1, class_num])
else:
target = paddle.reshape(feeds['label'], [-1, 1])
loss_func = build_loss(config["Loss"][mode])
loss_dict = loss_func(out, target)
loss_out = loss_dict["loss"]
fetchs['loss'] = (loss_out, AverageMeter('loss', '7.4f', need_avg=True))
# build metric
if not use_mix:
metric_func = build_metrics(config["Metric"][mode])
metric_dict = metric_func(out, target)
for key in metric_dict:
if mode != "Train" and paddle.distributed.get_world_size() > 1:
paddle.distributed.all_reduce(
metric_dict[key], op=paddle.distributed.ReduceOp.SUM)
metric_dict[key] = metric_dict[
key] / paddle.distributed.get_world_size()
fetchs[key] = (metric_dict[key], AverageMeter(
key, '7.4f', need_avg=True))
return fetchs
def create_optimizer(config, step_each_epoch):
# create learning_rate instance
optimizer, lr_sch = build_optimizer(
config["Optimizer"], config["Global"]["epochs"], step_each_epoch)
return optimizer, lr_sch
def create_strategy(config):
"""
Create build strategy and exec strategy.
Args:
config(dict): config
Returns:
build_strategy: build strategy
exec_strategy: exec strategy
"""
build_strategy = paddle.static.BuildStrategy()
exec_strategy = paddle.static.ExecutionStrategy()
exec_strategy.num_threads = 1
exec_strategy.num_iteration_per_drop_scope = (
10000
if 'AMP' in config and config.AMP.get("level", "O1") == "O2" else 10)
fuse_op = True if 'AMP' in config else False
fuse_bn_act_ops = config.get('fuse_bn_act_ops', fuse_op)
fuse_elewise_add_act_ops = config.get('fuse_elewise_add_act_ops', fuse_op)
fuse_bn_add_act_ops = config.get('fuse_bn_add_act_ops', fuse_op)
enable_addto = config.get('enable_addto', fuse_op)
build_strategy.fuse_bn_act_ops = fuse_bn_act_ops
build_strategy.fuse_elewise_add_act_ops = fuse_elewise_add_act_ops
build_strategy.fuse_bn_add_act_ops = fuse_bn_add_act_ops
build_strategy.enable_addto = enable_addto
return build_strategy, exec_strategy
def dist_optimizer(config, optimizer):
"""
Create a distributed optimizer based on a normal optimizer
Args:
config(dict):
optimizer(): a normal optimizer
Returns:
optimizer: a distributed optimizer
"""
build_strategy, exec_strategy = create_strategy(config)
dist_strategy = DistributedStrategy()
dist_strategy.execution_strategy = exec_strategy
dist_strategy.build_strategy = build_strategy
dist_strategy.nccl_comm_num = 1
dist_strategy.fuse_all_reduce_ops = True
dist_strategy.fuse_grad_size_in_MB = 16
optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)
return optimizer
def mixed_precision_optimizer(config, optimizer):
if 'AMP' in config:
amp_cfg = config.AMP if config.AMP else dict()
scale_loss = amp_cfg.get('scale_loss', 1.0)
use_dynamic_loss_scaling = amp_cfg.get('use_dynamic_loss_scaling',
False)
use_pure_fp16 = amp_cfg.get("level", "O1") == "O2"
optimizer = paddle.static.amp.decorate(
optimizer,
init_loss_scaling=scale_loss,
use_dynamic_loss_scaling=use_dynamic_loss_scaling,
use_pure_fp16=use_pure_fp16,
use_fp16_guard=True)
return optimizer
def build(config,
main_prog,
startup_prog,
class_num=None,
step_each_epoch=100,
is_train=True,
is_distributed=True):
"""
Build a program using a model and an optimizer
1. create feeds
2. create a dataloader
3. create a model
4. create fetchs
5. create an optimizer
Args:
config(dict): config
main_prog(): main program
startup_prog(): startup program
class_num(int): the class number of network, required if use_mix
is_train(bool): train or eval
is_distributed(bool): whether to use distributed training method
Returns:
dataloader(): a bridge between the model and the data
fetchs(dict): dict of model outputs(included loss and measures)
"""
with paddle.static.program_guard(main_prog, startup_prog):
with paddle.utils.unique_name.guard():
mode = "Train" if is_train else "Eval"
use_mix = "batch_transform_ops" in config["DataLoader"][mode][
"dataset"]
feeds = create_feeds(
config["Global"]["image_shape"],
use_mix,
class_num=class_num,
dtype="float32")
# build model
# data_format should be assigned in arch-dict
input_image_channel = config["Global"]["image_shape"][
0] # default as [3, 224, 224]
model = build_model(config)
out = model(feeds["data"])
# end of build model
fetchs = create_fetchs(
out,
feeds,
config["Arch"],
epsilon=config.get('ls_epsilon'),
class_num=class_num,
use_mix=use_mix,
config=config,
mode=mode)
lr_scheduler = None
optimizer = None
if is_train:
optimizer, lr_scheduler = build_optimizer(
config["Optimizer"], config["Global"]["epochs"],
step_each_epoch)
optimizer = mixed_precision_optimizer(config, optimizer)
if is_distributed:
optimizer = dist_optimizer(config, optimizer)
optimizer.minimize(fetchs['loss'][0])
return fetchs, lr_scheduler, feeds, optimizer
def compile(config, program, loss_name=None, share_prog=None):
"""
Compile the program
Args:
config(dict): config
program(): the program which is wrapped by
loss_name(str): loss name
share_prog(): the shared program, used for evaluation during training
Returns:
compiled_program(): a compiled program
"""
build_strategy, exec_strategy = create_strategy(config)
compiled_program = paddle.static.CompiledProgram(
program).with_data_parallel(
share_vars_from=share_prog,
loss_name=loss_name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
return compiled_program
total_step = 0
def run(dataloader,
exe,
program,
feeds,
fetchs,
epoch=0,
mode='train',
config=None,
vdl_writer=None,
lr_scheduler=None,
profiler_options=None):
"""
Feed data to the model and fetch the measures and loss
Args:
dataloader(paddle io dataloader):
exe():
program():
fetchs(dict): dict of measures and the loss
epoch(int): epoch of training or evaluation
model(str): log only
Returns:
"""
fetch_list = [f[0] for f in fetchs.values()]
metric_dict = OrderedDict([("lr", AverageMeter(
'lr', 'f', postfix=",", need_avg=False))])
for k in fetchs:
metric_dict[k] = fetchs[k][1]
metric_dict["batch_time"] = AverageMeter('batch_cost', '.5f', postfix=" s,")
metric_dict["reader_time"] = AverageMeter(
'reader_cost', '.5f', postfix=" s,")
for m in metric_dict.values():
m.reset()
use_dali = config["Global"].get('use_dali', False)
tic = time.time()
if not use_dali:
dataloader = dataloader()
idx = 0
batch_size = None
while True:
# The DALI maybe raise RuntimeError for some particular images, such as ImageNet1k/n04418357_26036.JPEG
try:
batch = next(dataloader)
except StopIteration:
break
except RuntimeError:
logger.warning(
"Except RuntimeError when reading data from dataloader, try to read once again..."
)
continue
idx += 1
# ignore the warmup iters
if idx == 5:
metric_dict["batch_time"].reset()
metric_dict["reader_time"].reset()
metric_dict['reader_time'].update(time.time() - tic)
profiler.add_profiler_step(profiler_options)
if use_dali:
batch_size = batch[0]["data"].shape()[0]
feed_dict = batch[0]
else:
batch_size = batch[0].shape()[0]
feed_dict = {
key.name: batch[idx]
for idx, key in enumerate(feeds.values())
}
metrics = exe.run(program=program,
feed=feed_dict,
fetch_list=fetch_list)
for name, m in zip(fetchs.keys(), metrics):
metric_dict[name].update(np.mean(m), batch_size)
metric_dict["batch_time"].update(time.time() - tic)
if mode == "train":
metric_dict['lr'].update(lr_scheduler.get_lr())
fetchs_str = ' '.join([
str(metric_dict[key].mean)
if "time" in key else str(metric_dict[key].value)
for key in metric_dict
])
ips_info = " ips: {:.5f} images/sec.".format(
batch_size / metric_dict["batch_time"].avg)
fetchs_str += ips_info
if lr_scheduler is not None:
lr_scheduler.step()
if vdl_writer:
global total_step
logger.scaler('loss', metrics[0][0], total_step, vdl_writer)
total_step += 1
if mode == 'eval':
if idx % config.get('print_interval', 10) == 0:
logger.info("{:s} step:{:<4d} {:s}".format(mode, idx,
fetchs_str))
else:
epoch_str = "epoch:{:<3d}".format(epoch)
step_str = "{:s} step:{:<4d}".format(mode, idx)
if idx % config.get('print_interval', 10) == 0:
logger.info("{:s} {:s} {:s}".format(epoch_str, step_str,
fetchs_str))
tic = time.time()
end_str = ' '.join([str(m.mean) for m in metric_dict.values()] +
[metric_dict["batch_time"].total])
ips_info = "ips: {:.5f} images/sec.".format(batch_size /
metric_dict["batch_time"].avg)
if mode == 'eval':
logger.info("END {:s} {:s} {:s}".format(mode, end_str, ips_info))
else:
end_epoch_str = "END epoch:{:<3d}".format(epoch)
logger.info("{:s} {:s} {:s} {:s}".format(end_epoch_str, mode, end_str,
ips_info))
if use_dali:
dataloader.reset()
# return top1_acc in order to save the best model
if mode == 'eval':
return fetchs["top1"][1].avg