You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

89 lines
2.9 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code is based on https://github.com/akuxcw/GridMask
import numpy as np
from PIL import Image
import pdb
# curr
CURR_EPOCH = 0
# epoch for the prob to be the upper limit
NUM_EPOCHS = 240
class GridMask(object):
def __init__(self, d1=96, d2=224, rotate=1, ratio=0.5, mode=0, prob=1.):
self.d1 = d1
self.d2 = d2
self.rotate = rotate
self.ratio = ratio
self.mode = mode
self.st_prob = prob
self.prob = prob
self.last_prob = -1
def set_prob(self):
global CURR_EPOCH
global NUM_EPOCHS
self.prob = self.st_prob * min(1, 1.0 * CURR_EPOCH / NUM_EPOCHS)
def __call__(self, img):
self.set_prob()
if abs(self.last_prob - self.prob) > 1e-10:
global CURR_EPOCH
global NUM_EPOCHS
print(
"self.prob is updated, self.prob={}, CURR_EPOCH: {}, NUM_EPOCHS: {}".
format(self.prob, CURR_EPOCH, NUM_EPOCHS))
self.last_prob = self.prob
# print("CURR_EPOCH: {}, NUM_EPOCHS: {}, self.prob is set as: {}".format(CURR_EPOCH, NUM_EPOCHS, self.prob) )
if np.random.rand() > self.prob:
return img
_, h, w = img.shape
hh = int(1.5 * h)
ww = int(1.5 * w)
d = np.random.randint(self.d1, self.d2)
#d = self.d
self.l = int(d * self.ratio + 0.5)
mask = np.ones((hh, ww), np.float32)
st_h = np.random.randint(d)
st_w = np.random.randint(d)
for i in range(-1, hh // d + 1):
s = d * i + st_h
t = s + self.l
s = max(min(s, hh), 0)
t = max(min(t, hh), 0)
mask[s:t, :] *= 0
for i in range(-1, ww // d + 1):
s = d * i + st_w
t = s + self.l
s = max(min(s, ww), 0)
t = max(min(t, ww), 0)
mask[:, s:t] *= 0
r = np.random.randint(self.rotate)
mask = Image.fromarray(np.uint8(mask))
mask = mask.rotate(r)
mask = np.asarray(mask)
mask = mask[(hh - h) // 2:(hh - h) // 2 + h, (ww - w) // 2:(ww - w) // 2
+ w]
if self.mode == 1:
mask = 1 - mask
mask = np.expand_dims(mask, axis=0)
img = (img * mask).astype(img.dtype)
return img