You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

383 lines
13 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/huawei-noah/CV-Backbones/tree/master/tnt_pytorch
import math
import numpy as np
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant
from ppcls.arch.backbone.base.theseus_layer import Identity
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"TNT_small":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams"
}
__all__ = MODEL_URLS.keys()
trunc_normal_ = TruncatedNormal(std=.02)
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = paddle.add(keep_prob, paddle.rand(shape, dtype=x.dtype))
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
hidden_dim,
num_heads=8,
qkv_bias=False,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
head_dim = hidden_dim // num_heads
self.head_dim = head_dim
self.scale = head_dim**-0.5
self.qk = nn.Linear(dim, hidden_dim * 2, bias_attr=qkv_bias)
self.v = nn.Linear(dim, dim, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qk = self.qk(x).reshape(
(B, N, 2, self.num_heads, self.head_dim)).transpose((2, 0, 3, 1, 4))
q, k = qk[0], qk[1]
v = self.v(x).reshape(
(B, N, self.num_heads, x.shape[-1] // self.num_heads)).transpose(
(0, 2, 1, 3))
attn = paddle.matmul(q, k.transpose((0, 1, 3, 2))) * self.scale
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = paddle.matmul(attn, v)
x = x.transpose((0, 2, 1, 3)).reshape((B, N, x.shape[-1] * x.shape[-3]))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
in_dim,
num_pixel,
num_heads=12,
in_num_head=4,
mlp_ratio=4.,
qkv_bias=False,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
# Inner transformer
self.norm_in = norm_layer(in_dim)
self.attn_in = Attention(
in_dim,
in_dim,
num_heads=in_num_head,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop)
self.norm_mlp_in = norm_layer(in_dim)
self.mlp_in = Mlp(in_features=in_dim,
hidden_features=int(in_dim * 4),
out_features=in_dim,
act_layer=act_layer,
drop=drop)
self.norm1_proj = norm_layer(in_dim)
self.proj = nn.Linear(in_dim * num_pixel, dim)
# Outer transformer
self.norm_out = norm_layer(dim)
self.attn_out = Attention(
dim,
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.norm_mlp = norm_layer(dim)
self.mlp = Mlp(in_features=dim,
hidden_features=int(dim * mlp_ratio),
out_features=dim,
act_layer=act_layer,
drop=drop)
def forward(self, pixel_embed, patch_embed):
# inner
pixel_embed = paddle.add(
pixel_embed,
self.drop_path(self.attn_in(self.norm_in(pixel_embed))))
pixel_embed = paddle.add(
pixel_embed,
self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed))))
# outer
B, N, C = patch_embed.shape
norm1_proj = self.norm1_proj(pixel_embed)
norm1_proj = norm1_proj.reshape(
(B, N - 1, norm1_proj.shape[1] * norm1_proj.shape[2]))
patch_embed[:, 1:] = paddle.add(patch_embed[:, 1:],
self.proj(norm1_proj))
patch_embed = paddle.add(
patch_embed,
self.drop_path(self.attn_out(self.norm_out(patch_embed))))
patch_embed = paddle.add(
patch_embed, self.drop_path(self.mlp(self.norm_mlp(patch_embed))))
return pixel_embed, patch_embed
class PixelEmbed(nn.Layer):
def __init__(self,
img_size=224,
patch_size=16,
in_chans=3,
in_dim=48,
stride=4):
super().__init__()
num_patches = (img_size // patch_size)**2
self.img_size = img_size
self.num_patches = num_patches
self.in_dim = in_dim
new_patch_size = math.ceil(patch_size / stride)
self.new_patch_size = new_patch_size
self.proj = nn.Conv2D(
in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride)
def forward(self, x, pixel_pos):
B, C, H, W = x.shape
assert H == self.img_size and W == self.img_size, f"Input image size ({H}*{W}) doesn't match model ({self.img_size}*{self.img_size})."
x = self.proj(x)
x = nn.functional.unfold(x, self.new_patch_size, self.new_patch_size)
x = x.transpose((0, 2, 1)).reshape(
(-1, self.in_dim, self.new_patch_size, self.new_patch_size))
x = x + pixel_pos
x = x.reshape((-1, self.in_dim, self.new_patch_size *
self.new_patch_size)).transpose((0, 2, 1))
return x
class TNT(nn.Layer):
def __init__(self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
in_dim=48,
depth=12,
num_heads=12,
in_num_head=4,
mlp_ratio=4.,
qkv_bias=False,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
first_stride=4,
class_num=1000):
super().__init__()
self.class_num = class_num
# num_features for consistency with other models
self.num_features = self.embed_dim = embed_dim
self.pixel_embed = PixelEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
in_dim=in_dim,
stride=first_stride)
num_patches = self.pixel_embed.num_patches
self.num_patches = num_patches
new_patch_size = self.pixel_embed.new_patch_size
num_pixel = new_patch_size**2
self.norm1_proj = norm_layer(num_pixel * in_dim)
self.proj = nn.Linear(num_pixel * in_dim, embed_dim)
self.norm2_proj = norm_layer(embed_dim)
self.cls_token = self.create_parameter(
shape=(1, 1, embed_dim), default_initializer=zeros_)
self.add_parameter("cls_token", self.cls_token)
self.patch_pos = self.create_parameter(
shape=(1, num_patches + 1, embed_dim), default_initializer=zeros_)
self.add_parameter("patch_pos", self.patch_pos)
self.pixel_pos = self.create_parameter(
shape=(1, in_dim, new_patch_size, new_patch_size),
default_initializer=zeros_)
self.add_parameter("pixel_pos", self.pixel_pos)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth decay rule
dpr = np.linspace(0, drop_path_rate, depth)
blocks = []
for i in range(depth):
blocks.append(
Block(
dim=embed_dim,
in_dim=in_dim,
num_pixel=num_pixel,
num_heads=num_heads,
in_num_head=in_num_head,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer))
self.blocks = nn.LayerList(blocks)
self.norm = norm_layer(embed_dim)
if class_num > 0:
self.head = nn.Linear(embed_dim, class_num)
trunc_normal_(self.cls_token)
trunc_normal_(self.patch_pos)
trunc_normal_(self.pixel_pos)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
def forward_features(self, x):
B = paddle.shape(x)[0]
pixel_embed = self.pixel_embed(x, self.pixel_pos)
patch_embed = self.norm2_proj(
self.proj(
self.norm1_proj(
pixel_embed.reshape((-1, self.num_patches, pixel_embed.
shape[-1] * pixel_embed.shape[-2])))))
patch_embed = paddle.concat(
(self.cls_token.expand((B, -1, -1)), patch_embed), axis=1)
patch_embed = patch_embed + self.patch_pos
patch_embed = self.pos_drop(patch_embed)
for blk in self.blocks:
pixel_embed, patch_embed = blk(pixel_embed, patch_embed)
patch_embed = self.norm(patch_embed)
return patch_embed[:, 0]
def forward(self, x):
x = self.forward_features(x)
if self.class_num > 0:
x = self.head(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def TNT_small(pretrained=False, **kwargs):
model = TNT(patch_size=16,
embed_dim=384,
in_dim=24,
depth=12,
num_heads=6,
in_num_head=4,
qkv_bias=False,
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["TNT_small"])
return model