You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
383 lines
13 KiB
383 lines
13 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Code was based on https://github.com/huawei-noah/CV-Backbones/tree/master/tnt_pytorch |
|
|
|
import math |
|
import numpy as np |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
|
|
from paddle.nn.initializer import TruncatedNormal, Constant |
|
|
|
from ppcls.arch.backbone.base.theseus_layer import Identity |
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"TNT_small": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams" |
|
} |
|
|
|
__all__ = MODEL_URLS.keys() |
|
|
|
trunc_normal_ = TruncatedNormal(std=.02) |
|
zeros_ = Constant(value=0.) |
|
ones_ = Constant(value=1.) |
|
|
|
|
|
def drop_path(x, drop_prob=0., training=False): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... |
|
""" |
|
if drop_prob == 0. or not training: |
|
return x |
|
keep_prob = paddle.to_tensor(1 - drop_prob) |
|
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1) |
|
random_tensor = paddle.add(keep_prob, paddle.rand(shape, dtype=x.dtype)) |
|
random_tensor = paddle.floor(random_tensor) # binarize |
|
output = x.divide(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
class DropPath(nn.Layer): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
|
|
class Mlp(nn.Layer): |
|
def __init__(self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Layer): |
|
def __init__(self, |
|
dim, |
|
hidden_dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
attn_drop=0., |
|
proj_drop=0.): |
|
super().__init__() |
|
self.hidden_dim = hidden_dim |
|
self.num_heads = num_heads |
|
head_dim = hidden_dim // num_heads |
|
self.head_dim = head_dim |
|
self.scale = head_dim**-0.5 |
|
|
|
self.qk = nn.Linear(dim, hidden_dim * 2, bias_attr=qkv_bias) |
|
self.v = nn.Linear(dim, dim, bias_attr=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qk = self.qk(x).reshape( |
|
(B, N, 2, self.num_heads, self.head_dim)).transpose((2, 0, 3, 1, 4)) |
|
|
|
q, k = qk[0], qk[1] |
|
v = self.v(x).reshape( |
|
(B, N, self.num_heads, x.shape[-1] // self.num_heads)).transpose( |
|
(0, 2, 1, 3)) |
|
|
|
attn = paddle.matmul(q, k.transpose((0, 1, 3, 2))) * self.scale |
|
attn = nn.functional.softmax(attn, axis=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = paddle.matmul(attn, v) |
|
x = x.transpose((0, 2, 1, 3)).reshape((B, N, x.shape[-1] * x.shape[-3])) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Layer): |
|
def __init__(self, |
|
dim, |
|
in_dim, |
|
num_pixel, |
|
num_heads=12, |
|
in_num_head=4, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
# Inner transformer |
|
self.norm_in = norm_layer(in_dim) |
|
self.attn_in = Attention( |
|
in_dim, |
|
in_dim, |
|
num_heads=in_num_head, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop) |
|
|
|
self.norm_mlp_in = norm_layer(in_dim) |
|
self.mlp_in = Mlp(in_features=in_dim, |
|
hidden_features=int(in_dim * 4), |
|
out_features=in_dim, |
|
act_layer=act_layer, |
|
drop=drop) |
|
|
|
self.norm1_proj = norm_layer(in_dim) |
|
self.proj = nn.Linear(in_dim * num_pixel, dim) |
|
# Outer transformer |
|
self.norm_out = norm_layer(dim) |
|
self.attn_out = Attention( |
|
dim, |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() |
|
|
|
self.norm_mlp = norm_layer(dim) |
|
self.mlp = Mlp(in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
out_features=dim, |
|
act_layer=act_layer, |
|
drop=drop) |
|
|
|
def forward(self, pixel_embed, patch_embed): |
|
# inner |
|
pixel_embed = paddle.add( |
|
pixel_embed, |
|
self.drop_path(self.attn_in(self.norm_in(pixel_embed)))) |
|
pixel_embed = paddle.add( |
|
pixel_embed, |
|
self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed)))) |
|
# outer |
|
B, N, C = patch_embed.shape |
|
norm1_proj = self.norm1_proj(pixel_embed) |
|
norm1_proj = norm1_proj.reshape( |
|
(B, N - 1, norm1_proj.shape[1] * norm1_proj.shape[2])) |
|
patch_embed[:, 1:] = paddle.add(patch_embed[:, 1:], |
|
self.proj(norm1_proj)) |
|
patch_embed = paddle.add( |
|
patch_embed, |
|
self.drop_path(self.attn_out(self.norm_out(patch_embed)))) |
|
patch_embed = paddle.add( |
|
patch_embed, self.drop_path(self.mlp(self.norm_mlp(patch_embed)))) |
|
return pixel_embed, patch_embed |
|
|
|
|
|
class PixelEmbed(nn.Layer): |
|
def __init__(self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
in_dim=48, |
|
stride=4): |
|
super().__init__() |
|
num_patches = (img_size // patch_size)**2 |
|
self.img_size = img_size |
|
self.num_patches = num_patches |
|
self.in_dim = in_dim |
|
new_patch_size = math.ceil(patch_size / stride) |
|
self.new_patch_size = new_patch_size |
|
|
|
self.proj = nn.Conv2D( |
|
in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride) |
|
|
|
def forward(self, x, pixel_pos): |
|
B, C, H, W = x.shape |
|
assert H == self.img_size and W == self.img_size, f"Input image size ({H}*{W}) doesn't match model ({self.img_size}*{self.img_size})." |
|
|
|
x = self.proj(x) |
|
x = nn.functional.unfold(x, self.new_patch_size, self.new_patch_size) |
|
x = x.transpose((0, 2, 1)).reshape( |
|
(-1, self.in_dim, self.new_patch_size, self.new_patch_size)) |
|
x = x + pixel_pos |
|
x = x.reshape((-1, self.in_dim, self.new_patch_size * |
|
self.new_patch_size)).transpose((0, 2, 1)) |
|
return x |
|
|
|
|
|
class TNT(nn.Layer): |
|
def __init__(self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
in_dim=48, |
|
depth=12, |
|
num_heads=12, |
|
in_num_head=4, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
norm_layer=nn.LayerNorm, |
|
first_stride=4, |
|
class_num=1000): |
|
super().__init__() |
|
self.class_num = class_num |
|
# num_features for consistency with other models |
|
self.num_features = self.embed_dim = embed_dim |
|
|
|
self.pixel_embed = PixelEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
in_dim=in_dim, |
|
stride=first_stride) |
|
num_patches = self.pixel_embed.num_patches |
|
self.num_patches = num_patches |
|
new_patch_size = self.pixel_embed.new_patch_size |
|
num_pixel = new_patch_size**2 |
|
|
|
self.norm1_proj = norm_layer(num_pixel * in_dim) |
|
self.proj = nn.Linear(num_pixel * in_dim, embed_dim) |
|
self.norm2_proj = norm_layer(embed_dim) |
|
|
|
self.cls_token = self.create_parameter( |
|
shape=(1, 1, embed_dim), default_initializer=zeros_) |
|
self.add_parameter("cls_token", self.cls_token) |
|
|
|
self.patch_pos = self.create_parameter( |
|
shape=(1, num_patches + 1, embed_dim), default_initializer=zeros_) |
|
self.add_parameter("patch_pos", self.patch_pos) |
|
|
|
self.pixel_pos = self.create_parameter( |
|
shape=(1, in_dim, new_patch_size, new_patch_size), |
|
default_initializer=zeros_) |
|
self.add_parameter("pixel_pos", self.pixel_pos) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
# stochastic depth decay rule |
|
dpr = np.linspace(0, drop_path_rate, depth) |
|
|
|
blocks = [] |
|
for i in range(depth): |
|
blocks.append( |
|
Block( |
|
dim=embed_dim, |
|
in_dim=in_dim, |
|
num_pixel=num_pixel, |
|
num_heads=num_heads, |
|
in_num_head=in_num_head, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer)) |
|
self.blocks = nn.LayerList(blocks) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
if class_num > 0: |
|
self.head = nn.Linear(embed_dim, class_num) |
|
|
|
trunc_normal_(self.cls_token) |
|
trunc_normal_(self.patch_pos) |
|
trunc_normal_(self.pixel_pos) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
zeros_(m.bias) |
|
elif isinstance(m, nn.LayerNorm): |
|
zeros_(m.bias) |
|
ones_(m.weight) |
|
|
|
def forward_features(self, x): |
|
B = paddle.shape(x)[0] |
|
pixel_embed = self.pixel_embed(x, self.pixel_pos) |
|
|
|
patch_embed = self.norm2_proj( |
|
self.proj( |
|
self.norm1_proj( |
|
pixel_embed.reshape((-1, self.num_patches, pixel_embed. |
|
shape[-1] * pixel_embed.shape[-2]))))) |
|
patch_embed = paddle.concat( |
|
(self.cls_token.expand((B, -1, -1)), patch_embed), axis=1) |
|
patch_embed = patch_embed + self.patch_pos |
|
patch_embed = self.pos_drop(patch_embed) |
|
|
|
for blk in self.blocks: |
|
pixel_embed, patch_embed = blk(pixel_embed, patch_embed) |
|
|
|
patch_embed = self.norm(patch_embed) |
|
return patch_embed[:, 0] |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
if self.class_num > 0: |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def TNT_small(pretrained=False, **kwargs): |
|
model = TNT(patch_size=16, |
|
embed_dim=384, |
|
in_dim=24, |
|
depth=12, |
|
num_heads=6, |
|
in_num_head=4, |
|
qkv_bias=False, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["TNT_small"]) |
|
return model
|
|
|