You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
6.6 KiB
194 lines
6.6 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout |
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D |
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"SqueezeNet1_0": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams", |
|
"SqueezeNet1_1": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams", |
|
} |
|
|
|
__all__ = list(MODEL_URLS.keys()) |
|
|
|
|
|
class MakeFireConv(nn.Layer): |
|
def __init__(self, |
|
input_channels, |
|
output_channels, |
|
filter_size, |
|
padding=0, |
|
name=None): |
|
super(MakeFireConv, self).__init__() |
|
self._conv = Conv2D( |
|
input_channels, |
|
output_channels, |
|
filter_size, |
|
padding=padding, |
|
weight_attr=ParamAttr(name=name + "_weights"), |
|
bias_attr=ParamAttr(name=name + "_offset")) |
|
|
|
def forward(self, x): |
|
x = self._conv(x) |
|
x = F.relu(x) |
|
return x |
|
|
|
|
|
class MakeFire(nn.Layer): |
|
def __init__(self, |
|
input_channels, |
|
squeeze_channels, |
|
expand1x1_channels, |
|
expand3x3_channels, |
|
name=None): |
|
super(MakeFire, self).__init__() |
|
self._conv = MakeFireConv( |
|
input_channels, squeeze_channels, 1, name=name + "_squeeze1x1") |
|
self._conv_path1 = MakeFireConv( |
|
squeeze_channels, expand1x1_channels, 1, name=name + "_expand1x1") |
|
self._conv_path2 = MakeFireConv( |
|
squeeze_channels, |
|
expand3x3_channels, |
|
3, |
|
padding=1, |
|
name=name + "_expand3x3") |
|
|
|
def forward(self, inputs): |
|
x = self._conv(inputs) |
|
x1 = self._conv_path1(x) |
|
x2 = self._conv_path2(x) |
|
return paddle.concat([x1, x2], axis=1) |
|
|
|
|
|
class SqueezeNet(nn.Layer): |
|
def __init__(self, version, class_num=1000): |
|
super(SqueezeNet, self).__init__() |
|
self.version = version |
|
|
|
if self.version == "1.0": |
|
self._conv = Conv2D( |
|
3, |
|
96, |
|
7, |
|
stride=2, |
|
weight_attr=ParamAttr(name="conv1_weights"), |
|
bias_attr=ParamAttr(name="conv1_offset")) |
|
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) |
|
self._conv1 = MakeFire(96, 16, 64, 64, name="fire2") |
|
self._conv2 = MakeFire(128, 16, 64, 64, name="fire3") |
|
self._conv3 = MakeFire(128, 32, 128, 128, name="fire4") |
|
|
|
self._conv4 = MakeFire(256, 32, 128, 128, name="fire5") |
|
self._conv5 = MakeFire(256, 48, 192, 192, name="fire6") |
|
self._conv6 = MakeFire(384, 48, 192, 192, name="fire7") |
|
self._conv7 = MakeFire(384, 64, 256, 256, name="fire8") |
|
|
|
self._conv8 = MakeFire(512, 64, 256, 256, name="fire9") |
|
else: |
|
self._conv = Conv2D( |
|
3, |
|
64, |
|
3, |
|
stride=2, |
|
padding=1, |
|
weight_attr=ParamAttr(name="conv1_weights"), |
|
bias_attr=ParamAttr(name="conv1_offset")) |
|
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) |
|
self._conv1 = MakeFire(64, 16, 64, 64, name="fire2") |
|
self._conv2 = MakeFire(128, 16, 64, 64, name="fire3") |
|
|
|
self._conv3 = MakeFire(128, 32, 128, 128, name="fire4") |
|
self._conv4 = MakeFire(256, 32, 128, 128, name="fire5") |
|
|
|
self._conv5 = MakeFire(256, 48, 192, 192, name="fire6") |
|
self._conv6 = MakeFire(384, 48, 192, 192, name="fire7") |
|
self._conv7 = MakeFire(384, 64, 256, 256, name="fire8") |
|
self._conv8 = MakeFire(512, 64, 256, 256, name="fire9") |
|
|
|
self._drop = Dropout(p=0.5, mode="downscale_in_infer") |
|
self._conv9 = Conv2D( |
|
512, |
|
class_num, |
|
1, |
|
weight_attr=ParamAttr(name="conv10_weights"), |
|
bias_attr=ParamAttr(name="conv10_offset")) |
|
self._avg_pool = AdaptiveAvgPool2D(1) |
|
|
|
def forward(self, inputs): |
|
x = self._conv(inputs) |
|
x = F.relu(x) |
|
x = self._pool(x) |
|
if self.version == "1.0": |
|
x = self._conv1(x) |
|
x = self._conv2(x) |
|
x = self._conv3(x) |
|
x = self._pool(x) |
|
x = self._conv4(x) |
|
x = self._conv5(x) |
|
x = self._conv6(x) |
|
x = self._conv7(x) |
|
x = self._pool(x) |
|
x = self._conv8(x) |
|
else: |
|
x = self._conv1(x) |
|
x = self._conv2(x) |
|
x = self._pool(x) |
|
x = self._conv3(x) |
|
x = self._conv4(x) |
|
x = self._pool(x) |
|
x = self._conv5(x) |
|
x = self._conv6(x) |
|
x = self._conv7(x) |
|
x = self._conv8(x) |
|
x = self._drop(x) |
|
x = self._conv9(x) |
|
x = F.relu(x) |
|
x = self._avg_pool(x) |
|
x = paddle.squeeze(x, axis=[2, 3]) |
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def SqueezeNet1_0(pretrained=False, use_ssld=False, **kwargs): |
|
model = SqueezeNet(version="1.0", **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["SqueezeNet1_0"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def SqueezeNet1_1(pretrained=False, use_ssld=False, **kwargs): |
|
model = SqueezeNet(version="1.1", **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["SqueezeNet1_1"], use_ssld=use_ssld) |
|
return model
|
|
|