You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
354 lines
12 KiB
354 lines
12 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import ParamAttr, reshape, transpose, concat, split |
|
from paddle.nn import Layer, Conv2D, MaxPool2D, AdaptiveAvgPool2D, BatchNorm, Linear |
|
from paddle.nn.initializer import KaimingNormal |
|
from paddle.nn.functional import swish |
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"ShuffleNetV2_x0_25": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams", |
|
"ShuffleNetV2_x0_33": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams", |
|
"ShuffleNetV2_x0_5": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams", |
|
"ShuffleNetV2_x1_0": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams", |
|
"ShuffleNetV2_x1_5": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams", |
|
"ShuffleNetV2_x2_0": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams", |
|
"ShuffleNetV2_swish": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams" |
|
} |
|
|
|
__all__ = list(MODEL_URLS.keys()) |
|
|
|
|
|
def channel_shuffle(x, groups): |
|
batch_size, num_channels, height, width = x.shape[0:4] |
|
channels_per_group = num_channels // groups |
|
|
|
# reshape |
|
x = reshape( |
|
x=x, shape=[batch_size, groups, channels_per_group, height, width]) |
|
|
|
# transpose |
|
x = transpose(x=x, perm=[0, 2, 1, 3, 4]) |
|
|
|
# flatten |
|
x = reshape(x=x, shape=[batch_size, num_channels, height, width]) |
|
return x |
|
|
|
|
|
class ConvBNLayer(Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
groups=1, |
|
act=None, |
|
name=None, ): |
|
super(ConvBNLayer, self).__init__() |
|
self._conv = Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=groups, |
|
weight_attr=ParamAttr( |
|
initializer=KaimingNormal(), name=name + "_weights"), |
|
bias_attr=False) |
|
|
|
self._batch_norm = BatchNorm( |
|
out_channels, |
|
param_attr=ParamAttr(name=name + "_bn_scale"), |
|
bias_attr=ParamAttr(name=name + "_bn_offset"), |
|
act=act, |
|
moving_mean_name=name + "_bn_mean", |
|
moving_variance_name=name + "_bn_variance") |
|
|
|
def forward(self, inputs): |
|
y = self._conv(inputs) |
|
y = self._batch_norm(y) |
|
return y |
|
|
|
|
|
class InvertedResidual(Layer): |
|
def __init__(self, in_channels, out_channels, stride, act="relu", |
|
name=None): |
|
super(InvertedResidual, self).__init__() |
|
self._conv_pw = ConvBNLayer( |
|
in_channels=in_channels // 2, |
|
out_channels=out_channels // 2, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
act=act, |
|
name='stage_' + name + '_conv1') |
|
self._conv_dw = ConvBNLayer( |
|
in_channels=out_channels // 2, |
|
out_channels=out_channels // 2, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
groups=out_channels // 2, |
|
act=None, |
|
name='stage_' + name + '_conv2') |
|
self._conv_linear = ConvBNLayer( |
|
in_channels=out_channels // 2, |
|
out_channels=out_channels // 2, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
act=act, |
|
name='stage_' + name + '_conv3') |
|
|
|
def forward(self, inputs): |
|
x1, x2 = split( |
|
inputs, |
|
num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2], |
|
axis=1) |
|
x2 = self._conv_pw(x2) |
|
x2 = self._conv_dw(x2) |
|
x2 = self._conv_linear(x2) |
|
out = concat([x1, x2], axis=1) |
|
return channel_shuffle(out, 2) |
|
|
|
|
|
class InvertedResidualDS(Layer): |
|
def __init__(self, in_channels, out_channels, stride, act="relu", |
|
name=None): |
|
super(InvertedResidualDS, self).__init__() |
|
|
|
# branch1 |
|
self._conv_dw_1 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
groups=in_channels, |
|
act=None, |
|
name='stage_' + name + '_conv4') |
|
self._conv_linear_1 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels // 2, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
act=act, |
|
name='stage_' + name + '_conv5') |
|
# branch2 |
|
self._conv_pw_2 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=out_channels // 2, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
act=act, |
|
name='stage_' + name + '_conv1') |
|
self._conv_dw_2 = ConvBNLayer( |
|
in_channels=out_channels // 2, |
|
out_channels=out_channels // 2, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
groups=out_channels // 2, |
|
act=None, |
|
name='stage_' + name + '_conv2') |
|
self._conv_linear_2 = ConvBNLayer( |
|
in_channels=out_channels // 2, |
|
out_channels=out_channels // 2, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
act=act, |
|
name='stage_' + name + '_conv3') |
|
|
|
def forward(self, inputs): |
|
x1 = self._conv_dw_1(inputs) |
|
x1 = self._conv_linear_1(x1) |
|
x2 = self._conv_pw_2(inputs) |
|
x2 = self._conv_dw_2(x2) |
|
x2 = self._conv_linear_2(x2) |
|
out = concat([x1, x2], axis=1) |
|
|
|
return channel_shuffle(out, 2) |
|
|
|
|
|
class ShuffleNet(Layer): |
|
def __init__(self, class_num=1000, scale=1.0, act="relu"): |
|
super(ShuffleNet, self).__init__() |
|
self.scale = scale |
|
self.class_num = class_num |
|
stage_repeats = [4, 8, 4] |
|
|
|
if scale == 0.25: |
|
stage_out_channels = [-1, 24, 24, 48, 96, 512] |
|
elif scale == 0.33: |
|
stage_out_channels = [-1, 24, 32, 64, 128, 512] |
|
elif scale == 0.5: |
|
stage_out_channels = [-1, 24, 48, 96, 192, 1024] |
|
elif scale == 1.0: |
|
stage_out_channels = [-1, 24, 116, 232, 464, 1024] |
|
elif scale == 1.5: |
|
stage_out_channels = [-1, 24, 176, 352, 704, 1024] |
|
elif scale == 2.0: |
|
stage_out_channels = [-1, 24, 224, 488, 976, 2048] |
|
else: |
|
raise NotImplementedError("This scale size:[" + str(scale) + |
|
"] is not implemented!") |
|
# 1. conv1 |
|
self._conv1 = ConvBNLayer( |
|
in_channels=3, |
|
out_channels=stage_out_channels[1], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
act=act, |
|
name='stage1_conv') |
|
self._max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1) |
|
|
|
# 2. bottleneck sequences |
|
self._block_list = [] |
|
for stage_id, num_repeat in enumerate(stage_repeats): |
|
for i in range(num_repeat): |
|
if i == 0: |
|
block = self.add_sublayer( |
|
name=str(stage_id + 2) + '_' + str(i + 1), |
|
sublayer=InvertedResidualDS( |
|
in_channels=stage_out_channels[stage_id + 1], |
|
out_channels=stage_out_channels[stage_id + 2], |
|
stride=2, |
|
act=act, |
|
name=str(stage_id + 2) + '_' + str(i + 1))) |
|
else: |
|
block = self.add_sublayer( |
|
name=str(stage_id + 2) + '_' + str(i + 1), |
|
sublayer=InvertedResidual( |
|
in_channels=stage_out_channels[stage_id + 2], |
|
out_channels=stage_out_channels[stage_id + 2], |
|
stride=1, |
|
act=act, |
|
name=str(stage_id + 2) + '_' + str(i + 1))) |
|
self._block_list.append(block) |
|
# 3. last_conv |
|
self._last_conv = ConvBNLayer( |
|
in_channels=stage_out_channels[-2], |
|
out_channels=stage_out_channels[-1], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
act=act, |
|
name='conv5') |
|
# 4. pool |
|
self._pool2d_avg = AdaptiveAvgPool2D(1) |
|
self._out_c = stage_out_channels[-1] |
|
# 5. fc |
|
self._fc = Linear( |
|
stage_out_channels[-1], |
|
class_num, |
|
weight_attr=ParamAttr(name='fc6_weights'), |
|
bias_attr=ParamAttr(name='fc6_offset')) |
|
|
|
def forward(self, inputs): |
|
y = self._conv1(inputs) |
|
y = self._max_pool(y) |
|
for inv in self._block_list: |
|
y = inv(y) |
|
y = self._last_conv(y) |
|
y = self._pool2d_avg(y) |
|
y = paddle.flatten(y, start_axis=1, stop_axis=-1) |
|
y = self._fc(y) |
|
return y |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def ShuffleNetV2_x0_25(pretrained=False, use_ssld=False, **kwargs): |
|
model = ShuffleNet(scale=0.25, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ShuffleNetV2_x0_25"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ShuffleNetV2_x0_33(pretrained=False, use_ssld=False, **kwargs): |
|
model = ShuffleNet(scale=0.33, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ShuffleNetV2_x0_33"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ShuffleNetV2_x0_5(pretrained=False, use_ssld=False, **kwargs): |
|
model = ShuffleNet(scale=0.5, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ShuffleNetV2_x0_5"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ShuffleNetV2_x1_0(pretrained=False, use_ssld=False, **kwargs): |
|
model = ShuffleNet(scale=1.0, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ShuffleNetV2_x1_0"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ShuffleNetV2_x1_5(pretrained=False, use_ssld=False, **kwargs): |
|
model = ShuffleNet(scale=1.5, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ShuffleNetV2_x1_5"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ShuffleNetV2_x2_0(pretrained=False, use_ssld=False, **kwargs): |
|
model = ShuffleNet(scale=2.0, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ShuffleNetV2_x2_0"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ShuffleNetV2_swish(pretrained=False, use_ssld=False, **kwargs): |
|
model = ShuffleNet(scale=1.0, act="swish", **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ShuffleNetV2_swish"], use_ssld=use_ssld) |
|
return model
|
|
|