You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

358 lines
12 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"SE_ResNeXt50_32x4d":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams",
"SE_ResNeXt101_32x4d":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams",
"SE_ResNeXt152_64x4d":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt152_64x4d_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
data_format='NCHW'):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
data_format=data_format)
bn_name = name + '_bn'
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance',
data_layout=data_format)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
cardinality,
reduction_ratio,
shortcut=True,
if_first=False,
name=None,
data_format="NCHW"):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu',
name='conv' + name + '_x1',
data_format=data_format)
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name='conv' + name + '_x2',
data_format=data_format)
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name='conv' + name + '_x3',
data_format=data_format)
self.scale = SELayer(
num_channels=num_filters * 2 if cardinality == 32 else num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
reduction_ratio=reduction_ratio,
name='fc' + name,
data_format=data_format)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 2
if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name='conv' + name + '_prj',
data_format=data_format)
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
scale = self.scale(conv2)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.add(x=short, y=scale)
y = F.relu(y)
return y
class SELayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
reduction_ratio,
name=None,
data_format="NCHW"):
super(SELayer, self).__init__()
self.data_format = data_format
self.pool2d_gap = AdaptiveAvgPool2D(1, data_format=self.data_format)
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self.squeeze = Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
bias_attr=ParamAttr(name=name + '_sqz_offset'))
self.relu = nn.ReLU()
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = Linear(
med_ch,
num_filters,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
bias_attr=ParamAttr(name=name + '_exc_offset'))
self.sigmoid = nn.Sigmoid()
def forward(self, input):
pool = self.pool2d_gap(input)
if self.data_format == "NHWC":
pool = paddle.squeeze(pool, axis=[1, 2])
else:
pool = paddle.squeeze(pool, axis=[2, 3])
squeeze = self.squeeze(pool)
squeeze = self.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = self.sigmoid(excitation)
if self.data_format == "NHWC":
excitation = paddle.unsqueeze(excitation, axis=[1, 2])
else:
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
out = input * excitation
return out
class ResNeXt(nn.Layer):
def __init__(self,
layers=50,
class_num=1000,
cardinality=32,
input_image_channel=3,
data_format="NCHW"):
super(ResNeXt, self).__init__()
self.layers = layers
self.cardinality = cardinality
self.reduction_ratio = 16
self.data_format = data_format
self.input_image_channel = input_image_channel
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
supported_cardinality = [32, 64]
assert cardinality in supported_cardinality, \
"supported cardinality is {} but input cardinality is {}" \
.format(supported_cardinality, cardinality)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512,
1024] if cardinality == 32 else [256, 512, 1024, 2048]
if layers < 152:
self.conv = ConvBNLayer(
num_channels=self.input_image_channel,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="conv1",
data_format=self.data_format)
else:
self.conv1_1 = ConvBNLayer(
num_channels=self.input_image_channel,
num_filters=64,
filter_size=3,
stride=2,
act='relu',
name="conv1",
data_format=self.data_format)
self.conv1_2 = ConvBNLayer(
num_channels=64,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name="conv2",
data_format=self.data_format)
self.conv1_3 = ConvBNLayer(
num_channels=64,
num_filters=128,
filter_size=3,
stride=1,
act='relu',
name="conv3",
data_format=self.data_format)
self.pool2d_max = MaxPool2D(
kernel_size=3, stride=2, padding=1, data_format=self.data_format)
self.block_list = []
n = 1 if layers == 50 or layers == 101 else 3
for block in range(len(depth)):
n += 1
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block] if i == 0 else
num_filters[block] * int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
reduction_ratio=self.reduction_ratio,
shortcut=shortcut,
if_first=block == 0,
name=str(n) + '_' + str(i + 1),
data_format=self.data_format))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_num,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name="fc6_weights"),
bias_attr=ParamAttr(name="fc6_offset"))
def forward(self, inputs):
with paddle.static.amp.fp16_guard():
if self.data_format == "NHWC":
inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
inputs.stop_gradient = True
if self.layers < 152:
y = self.conv(inputs)
else:
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for i, block in enumerate(self.block_list):
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def SE_ResNeXt50_32x4d(pretrained=False, use_ssld=False, **kwargs):
model = ResNeXt(layers=50, cardinality=32, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["SE_ResNeXt50_32x4d"], use_ssld=use_ssld)
return model
def SE_ResNeXt101_32x4d(pretrained=False, use_ssld=False, **kwargs):
model = ResNeXt(layers=101, cardinality=32, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["SE_ResNeXt101_32x4d"], use_ssld=use_ssld)
return model
def SE_ResNeXt152_64x4d(pretrained=False, use_ssld=False, **kwargs):
model = ResNeXt(layers=152, cardinality=64, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["SE_ResNeXt152_64x4d"], use_ssld=use_ssld)
return model