You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
281 lines
8.7 KiB
281 lines
8.7 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
from math import ceil |
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"ReXNet_1_0": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams", |
|
"ReXNet_1_3": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams", |
|
"ReXNet_1_5": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams", |
|
"ReXNet_2_0": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams", |
|
"ReXNet_3_0": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams", |
|
} |
|
|
|
__all__ = list(MODEL_URLS.keys()) |
|
|
|
|
|
def conv_bn_act(out, |
|
in_channels, |
|
channels, |
|
kernel=1, |
|
stride=1, |
|
pad=0, |
|
num_group=1, |
|
active=True, |
|
relu6=False): |
|
out.append( |
|
nn.Conv2D( |
|
in_channels, |
|
channels, |
|
kernel, |
|
stride, |
|
pad, |
|
groups=num_group, |
|
bias_attr=False)) |
|
out.append(nn.BatchNorm2D(channels)) |
|
if active: |
|
out.append(nn.ReLU6() if relu6 else nn.ReLU()) |
|
|
|
|
|
def conv_bn_swish(out, |
|
in_channels, |
|
channels, |
|
kernel=1, |
|
stride=1, |
|
pad=0, |
|
num_group=1): |
|
out.append( |
|
nn.Conv2D( |
|
in_channels, |
|
channels, |
|
kernel, |
|
stride, |
|
pad, |
|
groups=num_group, |
|
bias_attr=False)) |
|
out.append(nn.BatchNorm2D(channels)) |
|
out.append(nn.Swish()) |
|
|
|
|
|
class SE(nn.Layer): |
|
def __init__(self, in_channels, channels, se_ratio=12): |
|
super(SE, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2D(1) |
|
self.fc = nn.Sequential( |
|
nn.Conv2D( |
|
in_channels, channels // se_ratio, kernel_size=1, padding=0), |
|
nn.BatchNorm2D(channels // se_ratio), |
|
nn.ReLU(), |
|
nn.Conv2D( |
|
channels // se_ratio, channels, kernel_size=1, padding=0), |
|
nn.Sigmoid()) |
|
|
|
def forward(self, x): |
|
y = self.avg_pool(x) |
|
y = self.fc(y) |
|
return x * y |
|
|
|
|
|
class LinearBottleneck(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
channels, |
|
t, |
|
stride, |
|
use_se=True, |
|
se_ratio=12, |
|
**kwargs): |
|
super(LinearBottleneck, self).__init__(**kwargs) |
|
self.use_shortcut = stride == 1 and in_channels <= channels |
|
self.in_channels = in_channels |
|
self.out_channels = channels |
|
|
|
out = [] |
|
if t != 1: |
|
dw_channels = in_channels * t |
|
conv_bn_swish(out, in_channels=in_channels, channels=dw_channels) |
|
else: |
|
dw_channels = in_channels |
|
|
|
conv_bn_act( |
|
out, |
|
in_channels=dw_channels, |
|
channels=dw_channels, |
|
kernel=3, |
|
stride=stride, |
|
pad=1, |
|
num_group=dw_channels, |
|
active=False) |
|
|
|
if use_se: |
|
out.append(SE(dw_channels, dw_channels, se_ratio)) |
|
|
|
out.append(nn.ReLU6()) |
|
conv_bn_act( |
|
out, |
|
in_channels=dw_channels, |
|
channels=channels, |
|
active=False, |
|
relu6=True) |
|
self.out = nn.Sequential(*out) |
|
|
|
def forward(self, x): |
|
out = self.out(x) |
|
if self.use_shortcut: |
|
out[:, 0:self.in_channels] += x |
|
|
|
return out |
|
|
|
|
|
class ReXNetV1(nn.Layer): |
|
def __init__(self, |
|
input_ch=16, |
|
final_ch=180, |
|
width_mult=1.0, |
|
depth_mult=1.0, |
|
class_num=1000, |
|
use_se=True, |
|
se_ratio=12, |
|
dropout_ratio=0.2, |
|
bn_momentum=0.9): |
|
super(ReXNetV1, self).__init__() |
|
|
|
layers = [1, 2, 2, 3, 3, 5] |
|
strides = [1, 2, 2, 2, 1, 2] |
|
use_ses = [False, False, True, True, True, True] |
|
|
|
layers = [ceil(element * depth_mult) for element in layers] |
|
strides = sum([[element] + [1] * (layers[idx] - 1) |
|
for idx, element in enumerate(strides)], []) |
|
if use_se: |
|
use_ses = sum([[element] * layers[idx] |
|
for idx, element in enumerate(use_ses)], []) |
|
else: |
|
use_ses = [False] * sum(layers[:]) |
|
ts = [1] * layers[0] + [6] * sum(layers[1:]) |
|
|
|
self.depth = sum(layers[:]) * 3 |
|
stem_channel = 32 / width_mult if width_mult < 1.0 else 32 |
|
inplanes = input_ch / width_mult if width_mult < 1.0 else input_ch |
|
|
|
features = [] |
|
in_channels_group = [] |
|
channels_group = [] |
|
|
|
# The following channel configuration is a simple instance to make each layer become an expand layer. |
|
for i in range(self.depth // 3): |
|
if i == 0: |
|
in_channels_group.append(int(round(stem_channel * width_mult))) |
|
channels_group.append(int(round(inplanes * width_mult))) |
|
else: |
|
in_channels_group.append(int(round(inplanes * width_mult))) |
|
inplanes += final_ch / (self.depth // 3 * 1.0) |
|
channels_group.append(int(round(inplanes * width_mult))) |
|
|
|
conv_bn_swish( |
|
features, |
|
3, |
|
int(round(stem_channel * width_mult)), |
|
kernel=3, |
|
stride=2, |
|
pad=1) |
|
|
|
for block_idx, (in_c, c, t, s, se) in enumerate( |
|
zip(in_channels_group, channels_group, ts, strides, use_ses)): |
|
features.append( |
|
LinearBottleneck( |
|
in_channels=in_c, |
|
channels=c, |
|
t=t, |
|
stride=s, |
|
use_se=se, |
|
se_ratio=se_ratio)) |
|
|
|
pen_channels = int(1280 * width_mult) |
|
conv_bn_swish(features, c, pen_channels) |
|
|
|
features.append(nn.AdaptiveAvgPool2D(1)) |
|
self.features = nn.Sequential(*features) |
|
self.output = nn.Sequential( |
|
nn.Dropout(dropout_ratio), |
|
nn.Conv2D( |
|
pen_channels, class_num, 1, bias_attr=True)) |
|
|
|
def forward(self, x): |
|
x = self.features(x) |
|
x = self.output(x).squeeze(axis=-1).squeeze(axis=-1) |
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def ReXNet_1_0(pretrained=False, use_ssld=False, **kwargs): |
|
model = ReXNetV1(width_mult=1.0, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ReXNet_1_0"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ReXNet_1_3(pretrained=False, use_ssld=False, **kwargs): |
|
model = ReXNetV1(width_mult=1.3, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ReXNet_1_3"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ReXNet_1_5(pretrained=False, use_ssld=False, **kwargs): |
|
model = ReXNetV1(width_mult=1.5, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ReXNet_1_5"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ReXNet_2_0(pretrained=False, use_ssld=False, **kwargs): |
|
model = ReXNetV1(width_mult=2.0, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ReXNet_2_0"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def ReXNet_3_0(pretrained=False, use_ssld=False, **kwargs): |
|
model = ReXNetV1(width_mult=3.0, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["ReXNet_3_0"], use_ssld=use_ssld) |
|
return model
|
|
|