You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

281 lines
8.7 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from math import ceil
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"ReXNet_1_0":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams",
"ReXNet_1_3":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams",
"ReXNet_1_5":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams",
"ReXNet_2_0":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams",
"ReXNet_3_0":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
def conv_bn_act(out,
in_channels,
channels,
kernel=1,
stride=1,
pad=0,
num_group=1,
active=True,
relu6=False):
out.append(
nn.Conv2D(
in_channels,
channels,
kernel,
stride,
pad,
groups=num_group,
bias_attr=False))
out.append(nn.BatchNorm2D(channels))
if active:
out.append(nn.ReLU6() if relu6 else nn.ReLU())
def conv_bn_swish(out,
in_channels,
channels,
kernel=1,
stride=1,
pad=0,
num_group=1):
out.append(
nn.Conv2D(
in_channels,
channels,
kernel,
stride,
pad,
groups=num_group,
bias_attr=False))
out.append(nn.BatchNorm2D(channels))
out.append(nn.Swish())
class SE(nn.Layer):
def __init__(self, in_channels, channels, se_ratio=12):
super(SE, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.fc = nn.Sequential(
nn.Conv2D(
in_channels, channels // se_ratio, kernel_size=1, padding=0),
nn.BatchNorm2D(channels // se_ratio),
nn.ReLU(),
nn.Conv2D(
channels // se_ratio, channels, kernel_size=1, padding=0),
nn.Sigmoid())
def forward(self, x):
y = self.avg_pool(x)
y = self.fc(y)
return x * y
class LinearBottleneck(nn.Layer):
def __init__(self,
in_channels,
channels,
t,
stride,
use_se=True,
se_ratio=12,
**kwargs):
super(LinearBottleneck, self).__init__(**kwargs)
self.use_shortcut = stride == 1 and in_channels <= channels
self.in_channels = in_channels
self.out_channels = channels
out = []
if t != 1:
dw_channels = in_channels * t
conv_bn_swish(out, in_channels=in_channels, channels=dw_channels)
else:
dw_channels = in_channels
conv_bn_act(
out,
in_channels=dw_channels,
channels=dw_channels,
kernel=3,
stride=stride,
pad=1,
num_group=dw_channels,
active=False)
if use_se:
out.append(SE(dw_channels, dw_channels, se_ratio))
out.append(nn.ReLU6())
conv_bn_act(
out,
in_channels=dw_channels,
channels=channels,
active=False,
relu6=True)
self.out = nn.Sequential(*out)
def forward(self, x):
out = self.out(x)
if self.use_shortcut:
out[:, 0:self.in_channels] += x
return out
class ReXNetV1(nn.Layer):
def __init__(self,
input_ch=16,
final_ch=180,
width_mult=1.0,
depth_mult=1.0,
class_num=1000,
use_se=True,
se_ratio=12,
dropout_ratio=0.2,
bn_momentum=0.9):
super(ReXNetV1, self).__init__()
layers = [1, 2, 2, 3, 3, 5]
strides = [1, 2, 2, 2, 1, 2]
use_ses = [False, False, True, True, True, True]
layers = [ceil(element * depth_mult) for element in layers]
strides = sum([[element] + [1] * (layers[idx] - 1)
for idx, element in enumerate(strides)], [])
if use_se:
use_ses = sum([[element] * layers[idx]
for idx, element in enumerate(use_ses)], [])
else:
use_ses = [False] * sum(layers[:])
ts = [1] * layers[0] + [6] * sum(layers[1:])
self.depth = sum(layers[:]) * 3
stem_channel = 32 / width_mult if width_mult < 1.0 else 32
inplanes = input_ch / width_mult if width_mult < 1.0 else input_ch
features = []
in_channels_group = []
channels_group = []
# The following channel configuration is a simple instance to make each layer become an expand layer.
for i in range(self.depth // 3):
if i == 0:
in_channels_group.append(int(round(stem_channel * width_mult)))
channels_group.append(int(round(inplanes * width_mult)))
else:
in_channels_group.append(int(round(inplanes * width_mult)))
inplanes += final_ch / (self.depth // 3 * 1.0)
channels_group.append(int(round(inplanes * width_mult)))
conv_bn_swish(
features,
3,
int(round(stem_channel * width_mult)),
kernel=3,
stride=2,
pad=1)
for block_idx, (in_c, c, t, s, se) in enumerate(
zip(in_channels_group, channels_group, ts, strides, use_ses)):
features.append(
LinearBottleneck(
in_channels=in_c,
channels=c,
t=t,
stride=s,
use_se=se,
se_ratio=se_ratio))
pen_channels = int(1280 * width_mult)
conv_bn_swish(features, c, pen_channels)
features.append(nn.AdaptiveAvgPool2D(1))
self.features = nn.Sequential(*features)
self.output = nn.Sequential(
nn.Dropout(dropout_ratio),
nn.Conv2D(
pen_channels, class_num, 1, bias_attr=True))
def forward(self, x):
x = self.features(x)
x = self.output(x).squeeze(axis=-1).squeeze(axis=-1)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def ReXNet_1_0(pretrained=False, use_ssld=False, **kwargs):
model = ReXNetV1(width_mult=1.0, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["ReXNet_1_0"], use_ssld=use_ssld)
return model
def ReXNet_1_3(pretrained=False, use_ssld=False, **kwargs):
model = ReXNetV1(width_mult=1.3, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["ReXNet_1_3"], use_ssld=use_ssld)
return model
def ReXNet_1_5(pretrained=False, use_ssld=False, **kwargs):
model = ReXNetV1(width_mult=1.5, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["ReXNet_1_5"], use_ssld=use_ssld)
return model
def ReXNet_2_0(pretrained=False, use_ssld=False, **kwargs):
model = ReXNetV1(width_mult=2.0, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["ReXNet_2_0"], use_ssld=use_ssld)
return model
def ReXNet_3_0(pretrained=False, use_ssld=False, **kwargs):
model = ReXNetV1(width_mult=3.0, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["ReXNet_3_0"], use_ssld=use_ssld)
return model