You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

739 lines
23 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/zhanghang1989/ResNeSt
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import math
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import KaimingNormal
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.regularizer import L2Decay
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"ResNeSt50_fast_1s1x64d":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams",
"ResNeSt50":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams",
"ResNeSt101":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt101_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
dilation=1,
groups=1,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
bn_decay = 0.0
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
dilation=dilation,
groups=groups,
weight_attr=ParamAttr(name=name + "_weight"),
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(
name=name + "_scale", regularizer=L2Decay(bn_decay)),
bias_attr=ParamAttr(
name + "_offset", regularizer=L2Decay(bn_decay)),
moving_mean_name=name + "_mean",
moving_variance_name=name + "_variance")
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
return x
class rSoftmax(nn.Layer):
def __init__(self, radix, cardinality):
super(rSoftmax, self).__init__()
self.radix = radix
self.cardinality = cardinality
def forward(self, x):
cardinality = self.cardinality
radix = self.radix
batch, r, h, w = x.shape
if self.radix > 1:
x = paddle.reshape(
x=x,
shape=[
batch, cardinality, radix,
int(r * h * w / cardinality / radix)
])
x = paddle.transpose(x=x, perm=[0, 2, 1, 3])
x = nn.functional.softmax(x, axis=1)
x = paddle.reshape(x=x, shape=[batch, r * h * w, 1, 1])
else:
x = nn.functional.sigmoid(x)
return x
class SplatConv(nn.Layer):
def __init__(self,
in_channels,
channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
radix=2,
reduction_factor=4,
rectify_avg=False,
name=None):
super(SplatConv, self).__init__()
self.radix = radix
self.conv1 = ConvBNLayer(
num_channels=in_channels,
num_filters=channels * radix,
filter_size=kernel_size,
stride=stride,
groups=groups * radix,
act="relu",
name=name + "_1_weights")
self.avg_pool2d = AdaptiveAvgPool2D(1)
inter_channels = int(max(in_channels * radix // reduction_factor, 32))
# to calc gap
self.conv2 = ConvBNLayer(
num_channels=channels,
num_filters=inter_channels,
filter_size=1,
stride=1,
groups=groups,
act="relu",
name=name + "_2_weights")
# to calc atten
self.conv3 = Conv2D(
in_channels=inter_channels,
out_channels=channels * radix,
kernel_size=1,
stride=1,
padding=0,
groups=groups,
weight_attr=ParamAttr(
name=name + "_weights", initializer=KaimingNormal()),
bias_attr=False)
self.rsoftmax = rSoftmax(radix=radix, cardinality=groups)
def forward(self, x):
x = self.conv1(x)
if self.radix > 1:
splited = paddle.split(x, num_or_sections=self.radix, axis=1)
gap = paddle.add_n(splited)
else:
gap = x
gap = self.avg_pool2d(gap)
gap = self.conv2(gap)
atten = self.conv3(gap)
atten = self.rsoftmax(atten)
if self.radix > 1:
attens = paddle.split(atten, num_or_sections=self.radix, axis=1)
y = paddle.add_n([
paddle.multiply(split, att)
for (att, split) in zip(attens, splited)
])
else:
y = paddle.multiply(x, atten)
return y
class BottleneckBlock(nn.Layer):
def __init__(self,
inplanes,
planes,
stride=1,
radix=1,
cardinality=1,
bottleneck_width=64,
avd=False,
avd_first=False,
dilation=1,
is_first=False,
rectify_avg=False,
last_gamma=False,
avg_down=False,
name=None):
super(BottleneckBlock, self).__init__()
self.inplanes = inplanes
self.planes = planes
self.stride = stride
self.radix = radix
self.cardinality = cardinality
self.avd = avd
self.avd_first = avd_first
self.dilation = dilation
self.is_first = is_first
self.rectify_avg = rectify_avg
self.last_gamma = last_gamma
self.avg_down = avg_down
group_width = int(planes * (bottleneck_width / 64.)) * cardinality
self.conv1 = ConvBNLayer(
num_channels=self.inplanes,
num_filters=group_width,
filter_size=1,
stride=1,
groups=1,
act="relu",
name=name + "_conv1")
if avd and avd_first and (stride > 1 or is_first):
self.avg_pool2d_1 = AvgPool2D(
kernel_size=3, stride=stride, padding=1)
if radix >= 1:
self.conv2 = SplatConv(
in_channels=group_width,
channels=group_width,
kernel_size=3,
stride=1,
padding=dilation,
dilation=dilation,
groups=cardinality,
bias=False,
radix=radix,
rectify_avg=rectify_avg,
name=name + "_splat")
else:
self.conv2 = ConvBNLayer(
num_channels=group_width,
num_filters=group_width,
filter_size=3,
stride=1,
dilation=dilation,
groups=cardinality,
act="relu",
name=name + "_conv2")
if avd and avd_first == False and (stride > 1 or is_first):
self.avg_pool2d_2 = AvgPool2D(
kernel_size=3, stride=stride, padding=1)
self.conv3 = ConvBNLayer(
num_channels=group_width,
num_filters=planes * 4,
filter_size=1,
stride=1,
groups=1,
act=None,
name=name + "_conv3")
if stride != 1 or self.inplanes != self.planes * 4:
if avg_down:
if dilation == 1:
self.avg_pool2d_3 = AvgPool2D(
kernel_size=stride, stride=stride, padding=0)
else:
self.avg_pool2d_3 = AvgPool2D(
kernel_size=1, stride=1, padding=0, ceil_mode=True)
self.conv4 = Conv2D(
in_channels=self.inplanes,
out_channels=planes * 4,
kernel_size=1,
stride=1,
padding=0,
groups=1,
weight_attr=ParamAttr(
name=name + "_weights", initializer=KaimingNormal()),
bias_attr=False)
else:
self.conv4 = Conv2D(
in_channels=self.inplanes,
out_channels=planes * 4,
kernel_size=1,
stride=stride,
padding=0,
groups=1,
weight_attr=ParamAttr(
name=name + "_shortcut_weights",
initializer=KaimingNormal()),
bias_attr=False)
bn_decay = 0.0
self._batch_norm = BatchNorm(
planes * 4,
act=None,
param_attr=ParamAttr(
name=name + "_shortcut_scale",
regularizer=L2Decay(bn_decay)),
bias_attr=ParamAttr(
name + "_shortcut_offset", regularizer=L2Decay(bn_decay)),
moving_mean_name=name + "_shortcut_mean",
moving_variance_name=name + "_shortcut_variance")
def forward(self, x):
short = x
x = self.conv1(x)
if self.avd and self.avd_first and (self.stride > 1 or self.is_first):
x = self.avg_pool2d_1(x)
x = self.conv2(x)
if self.avd and self.avd_first == False and (self.stride > 1 or
self.is_first):
x = self.avg_pool2d_2(x)
x = self.conv3(x)
if self.stride != 1 or self.inplanes != self.planes * 4:
if self.avg_down:
short = self.avg_pool2d_3(short)
short = self.conv4(short)
short = self._batch_norm(short)
y = paddle.add(x=short, y=x)
y = F.relu(y)
return y
class ResNeStLayer(nn.Layer):
def __init__(self,
inplanes,
planes,
blocks,
radix,
cardinality,
bottleneck_width,
avg_down,
avd,
avd_first,
rectify_avg,
last_gamma,
stride=1,
dilation=1,
is_first=True,
name=None):
super(ResNeStLayer, self).__init__()
self.inplanes = inplanes
self.planes = planes
self.blocks = blocks
self.radix = radix
self.cardinality = cardinality
self.bottleneck_width = bottleneck_width
self.avg_down = avg_down
self.avd = avd
self.avd_first = avd_first
self.rectify_avg = rectify_avg
self.last_gamma = last_gamma
self.is_first = is_first
if dilation == 1 or dilation == 2:
bottleneck_func = self.add_sublayer(
name + "_bottleneck_0",
BottleneckBlock(
inplanes=self.inplanes,
planes=planes,
stride=stride,
radix=radix,
cardinality=cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
dilation=1,
is_first=is_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
name=name + "_bottleneck_0"))
elif dilation == 4:
bottleneck_func = self.add_sublayer(
name + "_bottleneck_0",
BottleneckBlock(
inplanes=self.inplanes,
planes=planes,
stride=stride,
radix=radix,
cardinality=cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
dilation=2,
is_first=is_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
name=name + "_bottleneck_0"))
else:
raise RuntimeError("=>unknown dilation size")
self.inplanes = planes * 4
self.bottleneck_block_list = [bottleneck_func]
for i in range(1, blocks):
curr_name = name + "_bottleneck_" + str(i)
bottleneck_func = self.add_sublayer(
curr_name,
BottleneckBlock(
inplanes=self.inplanes,
planes=planes,
radix=radix,
cardinality=cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
dilation=dilation,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
name=curr_name))
self.bottleneck_block_list.append(bottleneck_func)
def forward(self, x):
for bottleneck_block in self.bottleneck_block_list:
x = bottleneck_block(x)
return x
class ResNeSt(nn.Layer):
def __init__(self,
layers,
radix=1,
groups=1,
bottleneck_width=64,
dilated=False,
dilation=1,
deep_stem=False,
stem_width=64,
avg_down=False,
rectify_avg=False,
avd=False,
avd_first=False,
final_drop=0.0,
last_gamma=False,
class_num=1000):
super(ResNeSt, self).__init__()
self.cardinality = groups
self.bottleneck_width = bottleneck_width
# ResNet-D params
self.inplanes = stem_width * 2 if deep_stem else 64
self.avg_down = avg_down
self.last_gamma = last_gamma
# ResNeSt params
self.radix = radix
self.avd = avd
self.avd_first = avd_first
self.deep_stem = deep_stem
self.stem_width = stem_width
self.layers = layers
self.final_drop = final_drop
self.dilated = dilated
self.dilation = dilation
self.rectify_avg = rectify_avg
if self.deep_stem:
self.stem = nn.Sequential(
("conv1", ConvBNLayer(
num_channels=3,
num_filters=stem_width,
filter_size=3,
stride=2,
act="relu",
name="conv1")), ("conv2", ConvBNLayer(
num_channels=stem_width,
num_filters=stem_width,
filter_size=3,
stride=1,
act="relu",
name="conv2")), ("conv3", ConvBNLayer(
num_channels=stem_width,
num_filters=stem_width * 2,
filter_size=3,
stride=1,
act="relu",
name="conv3")))
else:
self.stem = ConvBNLayer(
num_channels=3,
num_filters=stem_width,
filter_size=7,
stride=2,
act="relu",
name="conv1")
self.max_pool2d = MaxPool2D(kernel_size=3, stride=2, padding=1)
self.layer1 = ResNeStLayer(
inplanes=self.stem_width * 2 if self.deep_stem else self.stem_width,
planes=64,
blocks=self.layers[0],
radix=radix,
cardinality=self.cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
stride=1,
dilation=1,
is_first=False,
name="layer1")
# return
self.layer2 = ResNeStLayer(
inplanes=256,
planes=128,
blocks=self.layers[1],
radix=radix,
cardinality=self.cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
stride=2,
name="layer2")
if self.dilated or self.dilation == 4:
self.layer3 = ResNeStLayer(
inplanes=512,
planes=256,
blocks=self.layers[2],
radix=radix,
cardinality=self.cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
stride=1,
dilation=2,
name="layer3")
self.layer4 = ResNeStLayer(
inplanes=1024,
planes=512,
blocks=self.layers[3],
radix=radix,
cardinality=self.cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
stride=1,
dilation=4,
name="layer4")
elif self.dilation == 2:
self.layer3 = ResNeStLayer(
inplanes=512,
planes=256,
blocks=self.layers[2],
radix=radix,
cardinality=self.cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
stride=2,
dilation=1,
name="layer3")
self.layer4 = ResNeStLayer(
inplanes=1024,
planes=512,
blocks=self.layers[3],
radix=radix,
cardinality=self.cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
stride=1,
dilation=2,
name="layer4")
else:
self.layer3 = ResNeStLayer(
inplanes=512,
planes=256,
blocks=self.layers[2],
radix=radix,
cardinality=self.cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
stride=2,
name="layer3")
self.layer4 = ResNeStLayer(
inplanes=1024,
planes=512,
blocks=self.layers[3],
radix=radix,
cardinality=self.cardinality,
bottleneck_width=bottleneck_width,
avg_down=self.avg_down,
avd=avd,
avd_first=avd_first,
rectify_avg=rectify_avg,
last_gamma=last_gamma,
stride=2,
name="layer4")
self.pool2d_avg = AdaptiveAvgPool2D(1)
self.out_channels = 2048
stdv = 1.0 / math.sqrt(self.out_channels * 1.0)
self.out = Linear(
self.out_channels,
class_num,
weight_attr=ParamAttr(
initializer=nn.initializer.Uniform(-stdv, stdv),
name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, x):
x = self.stem(x)
x = self.max_pool2d(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.pool2d_avg(x)
x = paddle.reshape(x, shape=[-1, self.out_channels])
x = self.out(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def ResNeSt50_fast_1s1x64d(pretrained=False, use_ssld=False, **kwargs):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=1,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=True,
final_drop=0.0,
**kwargs)
_load_pretrained(
pretrained,
model,
MODEL_URLS["ResNeSt50_fast_1s1x64d"],
use_ssld=use_ssld)
return model
def ResNeSt50(pretrained=False, use_ssld=False, **kwargs):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=False,
final_drop=0.0,
**kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["ResNeSt50"], use_ssld=use_ssld)
return model
def ResNeSt101(pretrained=False, use_ssld=False, **kwargs):
model = ResNeSt(
layers=[3, 4, 23, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=64,
avg_down=True,
avd=True,
avd_first=False,
final_drop=0.0,
**kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["ResNeSt101"], use_ssld=use_ssld)
return model