You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
431 lines
13 KiB
431 lines
13 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Code was based on https://github.com/facebookresearch/pycls |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout |
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D |
|
from paddle.nn.initializer import Uniform |
|
import math |
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"RegNetX_200MF": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams", |
|
"RegNetX_4GF": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams", |
|
"RegNetX_32GF": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams", |
|
"RegNetY_200MF": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_200MF_pretrained.pdparams", |
|
"RegNetY_4GF": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_4GF_pretrained.pdparams", |
|
"RegNetY_32GF": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_32GF_pretrained.pdparams", |
|
} |
|
|
|
__all__ = list(MODEL_URLS.keys()) |
|
|
|
|
|
def quantize_float(f, q): |
|
"""Converts a float to closest non-zero int divisible by q.""" |
|
return int(round(f / q) * q) |
|
|
|
|
|
def adjust_ws_gs_comp(ws, bms, gs): |
|
"""Adjusts the compatibility of widths and groups.""" |
|
ws_bot = [int(w * b) for w, b in zip(ws, bms)] |
|
gs = [min(g, w_bot) for g, w_bot in zip(gs, ws_bot)] |
|
ws_bot = [quantize_float(w_bot, g) for w_bot, g in zip(ws_bot, gs)] |
|
ws = [int(w_bot / b) for w_bot, b in zip(ws_bot, bms)] |
|
return ws, gs |
|
|
|
|
|
def get_stages_from_blocks(ws, rs): |
|
"""Gets ws/ds of network at each stage from per block values.""" |
|
ts = [ |
|
w != wp or r != rp |
|
for w, wp, r, rp in zip(ws + [0], [0] + ws, rs + [0], [0] + rs) |
|
] |
|
s_ws = [w for w, t in zip(ws, ts[:-1]) if t] |
|
s_ds = np.diff([d for d, t in zip(range(len(ts)), ts) if t]).tolist() |
|
return s_ws, s_ds |
|
|
|
|
|
def generate_regnet(w_a, w_0, w_m, d, q=8): |
|
"""Generates per block ws from RegNet parameters.""" |
|
assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0 |
|
ws_cont = np.arange(d) * w_a + w_0 |
|
ks = np.round(np.log(ws_cont / w_0) / np.log(w_m)) |
|
ws = w_0 * np.power(w_m, ks) |
|
ws = np.round(np.divide(ws, q)) * q |
|
num_stages, max_stage = len(np.unique(ws)), ks.max() + 1 |
|
ws, ws_cont = ws.astype(int).tolist(), ws_cont.tolist() |
|
return ws, num_stages, max_stage, ws_cont |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
filter_size, |
|
stride=1, |
|
groups=1, |
|
padding=0, |
|
act=None, |
|
name=None): |
|
super(ConvBNLayer, self).__init__() |
|
|
|
self._conv = Conv2D( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=groups, |
|
weight_attr=ParamAttr(name=name + ".conv2d.output.1.w_0"), |
|
bias_attr=ParamAttr(name=name + ".conv2d.output.1.b_0")) |
|
bn_name = name + "_bn" |
|
self._batch_norm = BatchNorm( |
|
num_filters, |
|
act=act, |
|
param_attr=ParamAttr(name=bn_name + ".output.1.w_0"), |
|
bias_attr=ParamAttr(bn_name + ".output.1.b_0"), |
|
moving_mean_name=bn_name + "_mean", |
|
moving_variance_name=bn_name + "_variance") |
|
|
|
def forward(self, inputs): |
|
y = self._conv(inputs) |
|
y = self._batch_norm(y) |
|
return y |
|
|
|
|
|
class BottleneckBlock(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
stride, |
|
bm, |
|
gw, |
|
se_on, |
|
se_r, |
|
shortcut=True, |
|
name=None): |
|
super(BottleneckBlock, self).__init__() |
|
|
|
# Compute the bottleneck width |
|
w_b = int(round(num_filters * bm)) |
|
# Compute the number of groups |
|
num_gs = w_b // gw |
|
self.se_on = se_on |
|
self.conv0 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=w_b, |
|
filter_size=1, |
|
padding=0, |
|
act="relu", |
|
name=name + "_branch2a") |
|
self.conv1 = ConvBNLayer( |
|
num_channels=w_b, |
|
num_filters=w_b, |
|
filter_size=3, |
|
stride=stride, |
|
padding=1, |
|
groups=num_gs, |
|
act="relu", |
|
name=name + "_branch2b") |
|
if se_on: |
|
w_se = int(round(num_channels * se_r)) |
|
self.se_block = SELayer( |
|
num_channels=w_b, |
|
num_filters=w_b, |
|
reduction_ratio=w_se, |
|
name=name + "_branch2se") |
|
self.conv2 = ConvBNLayer( |
|
num_channels=w_b, |
|
num_filters=num_filters, |
|
filter_size=1, |
|
act=None, |
|
name=name + "_branch2c") |
|
|
|
if not shortcut: |
|
self.short = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_filters, |
|
filter_size=1, |
|
stride=stride, |
|
name=name + "_branch1") |
|
|
|
self.shortcut = shortcut |
|
|
|
def forward(self, inputs): |
|
y = self.conv0(inputs) |
|
conv1 = self.conv1(y) |
|
if self.se_on: |
|
conv1 = self.se_block(conv1) |
|
conv2 = self.conv2(conv1) |
|
|
|
if self.shortcut: |
|
short = inputs |
|
else: |
|
short = self.short(inputs) |
|
|
|
y = paddle.add(x=short, y=conv2) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class SELayer(nn.Layer): |
|
def __init__(self, num_channels, num_filters, reduction_ratio, name=None): |
|
super(SELayer, self).__init__() |
|
|
|
self.pool2d_gap = AdaptiveAvgPool2D(1) |
|
|
|
self._num_channels = num_channels |
|
|
|
med_ch = int(num_channels / reduction_ratio) |
|
stdv = 1.0 / math.sqrt(num_channels * 1.0) |
|
self.squeeze = Linear( |
|
num_channels, |
|
med_ch, |
|
weight_attr=ParamAttr( |
|
initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"), |
|
bias_attr=ParamAttr(name=name + "_sqz_offset")) |
|
|
|
stdv = 1.0 / math.sqrt(med_ch * 1.0) |
|
self.excitation = Linear( |
|
med_ch, |
|
num_filters, |
|
weight_attr=ParamAttr( |
|
initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"), |
|
bias_attr=ParamAttr(name=name + "_exc_offset")) |
|
|
|
def forward(self, input): |
|
pool = self.pool2d_gap(input) |
|
pool = paddle.reshape(pool, shape=[-1, self._num_channels]) |
|
squeeze = self.squeeze(pool) |
|
squeeze = F.relu(squeeze) |
|
excitation = self.excitation(squeeze) |
|
excitation = F.sigmoid(excitation) |
|
excitation = paddle.reshape( |
|
excitation, shape=[-1, self._num_channels, 1, 1]) |
|
out = input * excitation |
|
return out |
|
|
|
|
|
class RegNet(nn.Layer): |
|
def __init__(self, |
|
w_a, |
|
w_0, |
|
w_m, |
|
d, |
|
group_w, |
|
bot_mul, |
|
q=8, |
|
se_on=False, |
|
class_num=1000): |
|
super(RegNet, self).__init__() |
|
|
|
# Generate RegNet ws per block |
|
b_ws, num_s, max_s, ws_cont = generate_regnet(w_a, w_0, w_m, d, q) |
|
# Convert to per stage format |
|
ws, ds = get_stages_from_blocks(b_ws, b_ws) |
|
# Generate group widths and bot muls |
|
gws = [group_w for _ in range(num_s)] |
|
bms = [bot_mul for _ in range(num_s)] |
|
# Adjust the compatibility of ws and gws |
|
ws, gws = adjust_ws_gs_comp(ws, bms, gws) |
|
# Use the same stride for each stage |
|
ss = [2 for _ in range(num_s)] |
|
# Use SE for RegNetY |
|
se_r = 0.25 |
|
# Construct the model |
|
# Group params by stage |
|
stage_params = list(zip(ds, ws, ss, bms, gws)) |
|
# Construct the stem |
|
stem_type = "simple_stem_in" |
|
stem_w = 32 |
|
block_type = "res_bottleneck_block" |
|
|
|
self.conv = ConvBNLayer( |
|
num_channels=3, |
|
num_filters=stem_w, |
|
filter_size=3, |
|
stride=2, |
|
padding=1, |
|
act="relu", |
|
name="stem_conv") |
|
|
|
self.block_list = [] |
|
for block, (d, w_out, stride, bm, gw) in enumerate(stage_params): |
|
shortcut = False |
|
for i in range(d): |
|
num_channels = stem_w if block == i == 0 else in_channels |
|
# Stride apply to the first block of the stage |
|
b_stride = stride if i == 0 else 1 |
|
conv_name = "s" + str(block + 1) + "_b" + str(i + |
|
1) # chr(97 + i) |
|
bottleneck_block = self.add_sublayer( |
|
conv_name, |
|
BottleneckBlock( |
|
num_channels=num_channels, |
|
num_filters=w_out, |
|
stride=b_stride, |
|
bm=bm, |
|
gw=gw, |
|
se_on=se_on, |
|
se_r=se_r, |
|
shortcut=shortcut, |
|
name=conv_name)) |
|
in_channels = w_out |
|
self.block_list.append(bottleneck_block) |
|
shortcut = True |
|
|
|
self.pool2d_avg = AdaptiveAvgPool2D(1) |
|
|
|
self.pool2d_avg_channels = w_out |
|
|
|
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0) |
|
|
|
self.out = Linear( |
|
self.pool2d_avg_channels, |
|
class_num, |
|
weight_attr=ParamAttr( |
|
initializer=Uniform(-stdv, stdv), name="fc_0.w_0"), |
|
bias_attr=ParamAttr(name="fc_0.b_0")) |
|
|
|
def forward(self, inputs): |
|
y = self.conv(inputs) |
|
for block in self.block_list: |
|
y = block(y) |
|
y = self.pool2d_avg(y) |
|
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels]) |
|
y = self.out(y) |
|
return y |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def RegNetX_200MF(pretrained=False, use_ssld=False, **kwargs): |
|
model = RegNet( |
|
w_a=36.44, |
|
w_0=24, |
|
w_m=2.49, |
|
d=13, |
|
group_w=8, |
|
bot_mul=1.0, |
|
q=8, |
|
**kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["RegNetX_200MF"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def RegNetX_4GF(pretrained=False, use_ssld=False, **kwargs): |
|
model = RegNet( |
|
w_a=38.65, |
|
w_0=96, |
|
w_m=2.43, |
|
d=23, |
|
group_w=40, |
|
bot_mul=1.0, |
|
q=8, |
|
**kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["RegNetX_4GF"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def RegNetX_32GF(pretrained=False, use_ssld=False, **kwargs): |
|
model = RegNet( |
|
w_a=69.86, |
|
w_0=320, |
|
w_m=2.0, |
|
d=23, |
|
group_w=168, |
|
bot_mul=1.0, |
|
q=8, |
|
**kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def RegNetY_200MF(pretrained=False, use_ssld=False, **kwargs): |
|
model = RegNet( |
|
w_a=36.44, |
|
w_0=24, |
|
w_m=2.49, |
|
d=13, |
|
group_w=8, |
|
bot_mul=1.0, |
|
q=8, |
|
se_on=True, |
|
**kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def RegNetY_4GF(pretrained=False, use_ssld=False, **kwargs): |
|
model = RegNet( |
|
w_a=31.41, |
|
w_0=96, |
|
w_m=2.24, |
|
d=22, |
|
group_w=64, |
|
bot_mul=1.0, |
|
q=8, |
|
se_on=True, |
|
**kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def RegNetY_32GF(pretrained=False, use_ssld=False, **kwargs): |
|
model = RegNet( |
|
w_a=115.89, |
|
w_0=232, |
|
w_m=2.53, |
|
d=20, |
|
group_w=232, |
|
bot_mul=1.0, |
|
q=8, |
|
se_on=True, |
|
**kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld) |
|
return model
|
|
|