You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
6.9 KiB
203 lines
6.9 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Code was based on https://github.com/d-li14/involution |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
|
|
from paddle.vision.models import resnet |
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"RedNet26": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams", |
|
"RedNet38": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams", |
|
"RedNet50": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams", |
|
"RedNet101": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams", |
|
"RedNet152": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams" |
|
} |
|
|
|
__all__ = MODEL_URLS.keys() |
|
|
|
|
|
class Involution(nn.Layer): |
|
def __init__(self, channels, kernel_size, stride): |
|
super(Involution, self).__init__() |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.channels = channels |
|
reduction_ratio = 4 |
|
self.group_channels = 16 |
|
self.groups = self.channels // self.group_channels |
|
self.conv1 = nn.Sequential( |
|
('conv', nn.Conv2D( |
|
in_channels=channels, |
|
out_channels=channels // reduction_ratio, |
|
kernel_size=1, |
|
bias_attr=False)), |
|
('bn', nn.BatchNorm2D(channels // reduction_ratio)), |
|
('activate', nn.ReLU())) |
|
self.conv2 = nn.Sequential(('conv', nn.Conv2D( |
|
in_channels=channels // reduction_ratio, |
|
out_channels=kernel_size**2 * self.groups, |
|
kernel_size=1, |
|
stride=1))) |
|
if stride > 1: |
|
self.avgpool = nn.AvgPool2D(stride, stride) |
|
|
|
def forward(self, x): |
|
weight = self.conv2( |
|
self.conv1(x if self.stride == 1 else self.avgpool(x))) |
|
b, c, h, w = weight.shape |
|
weight = weight.reshape( |
|
(b, self.groups, self.kernel_size**2, h, w)).unsqueeze(2) |
|
|
|
out = nn.functional.unfold(x, self.kernel_size, self.stride, |
|
(self.kernel_size - 1) // 2, 1) |
|
out = out.reshape( |
|
(b, self.groups, self.group_channels, self.kernel_size**2, h, w)) |
|
out = (weight * out).sum(axis=3).reshape((b, self.channels, h, w)) |
|
return out |
|
|
|
|
|
class BottleneckBlock(resnet.BottleneckBlock): |
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
groups=1, |
|
base_width=64, |
|
dilation=1, |
|
norm_layer=None): |
|
super(BottleneckBlock, self).__init__(inplanes, planes, stride, |
|
downsample, groups, base_width, |
|
dilation, norm_layer) |
|
width = int(planes * (base_width / 64.)) * groups |
|
self.conv2 = Involution(width, 7, stride) |
|
|
|
|
|
class RedNet(resnet.ResNet): |
|
def __init__(self, block, depth, class_num=1000, with_pool=True): |
|
super(RedNet, self).__init__( |
|
block=block, depth=50, num_classes=class_num, with_pool=with_pool) |
|
layer_cfg = { |
|
26: [1, 2, 4, 1], |
|
38: [2, 3, 5, 2], |
|
50: [3, 4, 6, 3], |
|
101: [3, 4, 23, 3], |
|
152: [3, 8, 36, 3] |
|
} |
|
layers = layer_cfg[depth] |
|
|
|
self.conv1 = None |
|
self.bn1 = None |
|
self.relu = None |
|
self.inplanes = 64 |
|
self.class_num = class_num |
|
self.stem = nn.Sequential( |
|
nn.Sequential( |
|
('conv', nn.Conv2D( |
|
in_channels=3, |
|
out_channels=self.inplanes // 2, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias_attr=False)), |
|
('bn', nn.BatchNorm2D(self.inplanes // 2)), |
|
('activate', nn.ReLU())), |
|
Involution(self.inplanes // 2, 3, 1), |
|
nn.BatchNorm2D(self.inplanes // 2), |
|
nn.ReLU(), |
|
nn.Sequential( |
|
('conv', nn.Conv2D( |
|
in_channels=self.inplanes // 2, |
|
out_channels=self.inplanes, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias_attr=False)), ('bn', nn.BatchNorm2D(self.inplanes)), |
|
('activate', nn.ReLU()))) |
|
|
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
|
|
def forward(self, x): |
|
x = self.stem(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
if self.with_pool: |
|
x = self.avgpool(x) |
|
|
|
if self.class_num > 0: |
|
x = paddle.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def RedNet26(pretrained=False, **kwargs): |
|
model = RedNet(BottleneckBlock, 26, **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["RedNet26"]) |
|
return model |
|
|
|
|
|
def RedNet38(pretrained=False, **kwargs): |
|
model = RedNet(BottleneckBlock, 38, **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["RedNet38"]) |
|
return model |
|
|
|
|
|
def RedNet50(pretrained=False, **kwargs): |
|
model = RedNet(BottleneckBlock, 50, **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["RedNet50"]) |
|
return model |
|
|
|
|
|
def RedNet101(pretrained=False, **kwargs): |
|
model = RedNet(BottleneckBlock, 101, **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["RedNet101"]) |
|
return model |
|
|
|
|
|
def RedNet152(pretrained=False, **kwargs): |
|
model = RedNet(BottleneckBlock, 152, **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["RedNet152"]) |
|
return model
|
|
|