You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

203 lines
6.9 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/d-li14/involution
import paddle
import paddle.nn as nn
from paddle.vision.models import resnet
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"RedNet26":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams",
"RedNet38":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams",
"RedNet50":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams",
"RedNet101":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams",
"RedNet152":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams"
}
__all__ = MODEL_URLS.keys()
class Involution(nn.Layer):
def __init__(self, channels, kernel_size, stride):
super(Involution, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.channels = channels
reduction_ratio = 4
self.group_channels = 16
self.groups = self.channels // self.group_channels
self.conv1 = nn.Sequential(
('conv', nn.Conv2D(
in_channels=channels,
out_channels=channels // reduction_ratio,
kernel_size=1,
bias_attr=False)),
('bn', nn.BatchNorm2D(channels // reduction_ratio)),
('activate', nn.ReLU()))
self.conv2 = nn.Sequential(('conv', nn.Conv2D(
in_channels=channels // reduction_ratio,
out_channels=kernel_size**2 * self.groups,
kernel_size=1,
stride=1)))
if stride > 1:
self.avgpool = nn.AvgPool2D(stride, stride)
def forward(self, x):
weight = self.conv2(
self.conv1(x if self.stride == 1 else self.avgpool(x)))
b, c, h, w = weight.shape
weight = weight.reshape(
(b, self.groups, self.kernel_size**2, h, w)).unsqueeze(2)
out = nn.functional.unfold(x, self.kernel_size, self.stride,
(self.kernel_size - 1) // 2, 1)
out = out.reshape(
(b, self.groups, self.group_channels, self.kernel_size**2, h, w))
out = (weight * out).sum(axis=3).reshape((b, self.channels, h, w))
return out
class BottleneckBlock(resnet.BottleneckBlock):
def __init__(self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None):
super(BottleneckBlock, self).__init__(inplanes, planes, stride,
downsample, groups, base_width,
dilation, norm_layer)
width = int(planes * (base_width / 64.)) * groups
self.conv2 = Involution(width, 7, stride)
class RedNet(resnet.ResNet):
def __init__(self, block, depth, class_num=1000, with_pool=True):
super(RedNet, self).__init__(
block=block, depth=50, num_classes=class_num, with_pool=with_pool)
layer_cfg = {
26: [1, 2, 4, 1],
38: [2, 3, 5, 2],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3]
}
layers = layer_cfg[depth]
self.conv1 = None
self.bn1 = None
self.relu = None
self.inplanes = 64
self.class_num = class_num
self.stem = nn.Sequential(
nn.Sequential(
('conv', nn.Conv2D(
in_channels=3,
out_channels=self.inplanes // 2,
kernel_size=3,
stride=2,
padding=1,
bias_attr=False)),
('bn', nn.BatchNorm2D(self.inplanes // 2)),
('activate', nn.ReLU())),
Involution(self.inplanes // 2, 3, 1),
nn.BatchNorm2D(self.inplanes // 2),
nn.ReLU(),
nn.Sequential(
('conv', nn.Conv2D(
in_channels=self.inplanes // 2,
out_channels=self.inplanes,
kernel_size=3,
stride=1,
padding=1,
bias_attr=False)), ('bn', nn.BatchNorm2D(self.inplanes)),
('activate', nn.ReLU())))
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
def forward(self, x):
x = self.stem(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if self.with_pool:
x = self.avgpool(x)
if self.class_num > 0:
x = paddle.flatten(x, 1)
x = self.fc(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def RedNet26(pretrained=False, **kwargs):
model = RedNet(BottleneckBlock, 26, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["RedNet26"])
return model
def RedNet38(pretrained=False, **kwargs):
model = RedNet(BottleneckBlock, 38, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["RedNet38"])
return model
def RedNet50(pretrained=False, **kwargs):
model = RedNet(BottleneckBlock, 50, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["RedNet50"])
return model
def RedNet101(pretrained=False, **kwargs):
model = RedNet(BottleneckBlock, 101, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["RedNet101"])
return model
def RedNet152(pretrained=False, **kwargs):
model = RedNet(BottleneckBlock, 152, **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["RedNet152"])
return model