You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

589 lines
19 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/facebookresearch/LeViT
import itertools
import math
import warnings
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import TruncatedNormal, Constant
from paddle.regularizer import L2Decay
from .vision_transformer import trunc_normal_, zeros_, ones_, Identity
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"LeViT_128S":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams",
"LeViT_128":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams",
"LeViT_192":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams",
"LeViT_256":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams",
"LeViT_384":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
def cal_attention_biases(attention_biases, attention_bias_idxs):
gather_list = []
attention_bias_t = paddle.transpose(attention_biases, (1, 0))
nums = attention_bias_idxs.shape[0]
for idx in range(nums):
gather = paddle.gather(attention_bias_t, attention_bias_idxs[idx])
gather_list.append(gather)
shape0, shape1 = attention_bias_idxs.shape
gather = paddle.concat(gather_list)
return paddle.transpose(gather, (1, 0)).reshape((0, shape0, shape1))
class Conv2d_BN(nn.Sequential):
def __init__(self,
a,
b,
ks=1,
stride=1,
pad=0,
dilation=1,
groups=1,
bn_weight_init=1,
resolution=-10000):
super().__init__()
self.add_sublayer(
'c',
nn.Conv2D(
a, b, ks, stride, pad, dilation, groups, bias_attr=False))
bn = nn.BatchNorm2D(b)
ones_(bn.weight)
zeros_(bn.bias)
self.add_sublayer('bn', bn)
class Linear_BN(nn.Sequential):
def __init__(self, a, b, bn_weight_init=1):
super().__init__()
self.add_sublayer('c', nn.Linear(a, b, bias_attr=False))
bn = nn.BatchNorm1D(b)
if bn_weight_init == 0:
zeros_(bn.weight)
else:
ones_(bn.weight)
zeros_(bn.bias)
self.add_sublayer('bn', bn)
def forward(self, x):
l, bn = self._sub_layers.values()
x = l(x)
return paddle.reshape(bn(x.flatten(0, 1)), x.shape)
class BN_Linear(nn.Sequential):
def __init__(self, a, b, bias=True, std=0.02):
super().__init__()
self.add_sublayer('bn', nn.BatchNorm1D(a))
l = nn.Linear(a, b, bias_attr=bias)
trunc_normal_(l.weight)
if bias:
zeros_(l.bias)
self.add_sublayer('l', l)
def b16(n, activation, resolution=224):
return nn.Sequential(
Conv2d_BN(
3, n // 8, 3, 2, 1, resolution=resolution),
activation(),
Conv2d_BN(
n // 8, n // 4, 3, 2, 1, resolution=resolution // 2),
activation(),
Conv2d_BN(
n // 4, n // 2, 3, 2, 1, resolution=resolution // 4),
activation(),
Conv2d_BN(
n // 2, n, 3, 2, 1, resolution=resolution // 8))
class Residual(nn.Layer):
def __init__(self, m, drop):
super().__init__()
self.m = m
self.drop = drop
def forward(self, x):
if self.training and self.drop > 0:
y = paddle.rand(
shape=[x.shape[0], 1, 1]).__ge__(self.drop).astype("float32")
y = y.divide(paddle.full_like(y, 1 - self.drop))
return paddle.add(x, y)
else:
return paddle.add(x, self.m(x))
class Attention(nn.Layer):
def __init__(self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
activation=None,
resolution=14):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
self.h = self.dh + nh_kd * 2
self.qkv = Linear_BN(dim, self.h)
self.proj = nn.Sequential(
activation(), Linear_BN(
self.dh, dim, bn_weight_init=0))
points = list(itertools.product(range(resolution), range(resolution)))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = self.create_parameter(
shape=(num_heads, len(attention_offsets)),
default_initializer=zeros_,
attr=paddle.ParamAttr(regularizer=L2Decay(0.0)))
tensor_idxs = paddle.to_tensor(idxs, dtype='int64')
self.register_buffer('attention_bias_idxs',
paddle.reshape(tensor_idxs, [N, N]))
@paddle.no_grad()
def train(self, mode=True):
if mode:
super().train()
else:
super().eval()
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = cal_attention_biases(self.attention_biases,
self.attention_bias_idxs)
def forward(self, x):
self.training = True
B, N, C = x.shape
qkv = self.qkv(x)
qkv = paddle.reshape(qkv,
[B, N, self.num_heads, self.h // self.num_heads])
q, k, v = paddle.split(
qkv, [self.key_dim, self.key_dim, self.d], axis=3)
q = paddle.transpose(q, perm=[0, 2, 1, 3])
k = paddle.transpose(k, perm=[0, 2, 1, 3])
v = paddle.transpose(v, perm=[0, 2, 1, 3])
k_transpose = paddle.transpose(k, perm=[0, 1, 3, 2])
if self.training:
attention_biases = cal_attention_biases(self.attention_biases,
self.attention_bias_idxs)
else:
attention_biases = self.ab
attn = (paddle.matmul(q, k_transpose) * self.scale + attention_biases)
attn = F.softmax(attn)
x = paddle.transpose(paddle.matmul(attn, v), perm=[0, 2, 1, 3])
x = paddle.reshape(x, [B, N, self.dh])
x = self.proj(x)
return x
class Subsample(nn.Layer):
def __init__(self, stride, resolution):
super().__init__()
self.stride = stride
self.resolution = resolution
def forward(self, x):
B, N, C = x.shape
x = paddle.reshape(x, [B, self.resolution, self.resolution, C])
end1, end2 = x.shape[1], x.shape[2]
x = x[:, 0:end1:self.stride, 0:end2:self.stride]
x = paddle.reshape(x, [B, -1, C])
return x
class AttentionSubsample(nn.Layer):
def __init__(self,
in_dim,
out_dim,
key_dim,
num_heads=8,
attn_ratio=2,
activation=None,
stride=2,
resolution=14,
resolution_=7):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * self.num_heads
self.attn_ratio = attn_ratio
self.resolution_ = resolution_
self.resolution_2 = resolution_**2
self.training = True
h = self.dh + nh_kd
self.kv = Linear_BN(in_dim, h)
self.q = nn.Sequential(
Subsample(stride, resolution), Linear_BN(in_dim, nh_kd))
self.proj = nn.Sequential(activation(), Linear_BN(self.dh, out_dim))
self.stride = stride
self.resolution = resolution
points = list(itertools.product(range(resolution), range(resolution)))
points_ = list(
itertools.product(range(resolution_), range(resolution_)))
N = len(points)
N_ = len(points_)
attention_offsets = {}
idxs = []
i = 0
j = 0
for p1 in points_:
i += 1
for p2 in points:
j += 1
size = 1
offset = (abs(p1[0] * stride - p2[0] + (size - 1) / 2),
abs(p1[1] * stride - p2[1] + (size - 1) / 2))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = self.create_parameter(
shape=(num_heads, len(attention_offsets)),
default_initializer=zeros_,
attr=paddle.ParamAttr(regularizer=L2Decay(0.0)))
tensor_idxs_ = paddle.to_tensor(idxs, dtype='int64')
self.register_buffer('attention_bias_idxs',
paddle.reshape(tensor_idxs_, [N_, N]))
@paddle.no_grad()
def train(self, mode=True):
if mode:
super().train()
else:
super().eval()
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = cal_attention_biases(self.attention_biases,
self.attention_bias_idxs)
def forward(self, x):
self.training = True
B, N, C = x.shape
kv = self.kv(x)
kv = paddle.reshape(kv, [B, N, self.num_heads, -1])
k, v = paddle.split(kv, [self.key_dim, self.d], axis=3)
k = paddle.transpose(k, perm=[0, 2, 1, 3]) # BHNC
v = paddle.transpose(v, perm=[0, 2, 1, 3])
q = paddle.reshape(
self.q(x), [B, self.resolution_2, self.num_heads, self.key_dim])
q = paddle.transpose(q, perm=[0, 2, 1, 3])
if self.training:
attention_biases = cal_attention_biases(self.attention_biases,
self.attention_bias_idxs)
else:
attention_biases = self.ab
attn = (paddle.matmul(
q, paddle.transpose(
k, perm=[0, 1, 3, 2]))) * self.scale + attention_biases
attn = F.softmax(attn)
x = paddle.reshape(
paddle.transpose(
paddle.matmul(attn, v), perm=[0, 2, 1, 3]), [B, -1, self.dh])
x = self.proj(x)
return x
class LeViT(nn.Layer):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self,
img_size=224,
patch_size=16,
in_chans=3,
class_num=1000,
embed_dim=[192],
key_dim=[64],
depth=[12],
num_heads=[3],
attn_ratio=[2],
mlp_ratio=[2],
hybrid_backbone=None,
down_ops=[],
attention_activation=nn.Hardswish,
mlp_activation=nn.Hardswish,
distillation=True,
drop_path=0):
super().__init__()
self.class_num = class_num
self.num_features = embed_dim[-1]
self.embed_dim = embed_dim
self.distillation = distillation
self.patch_embed = hybrid_backbone
self.blocks = []
down_ops.append([''])
resolution = img_size // patch_size
for i, (ed, kd, dpth, nh, ar, mr, do) in enumerate(
zip(embed_dim, key_dim, depth, num_heads, attn_ratio, mlp_ratio,
down_ops)):
for _ in range(dpth):
self.blocks.append(
Residual(
Attention(
ed,
kd,
nh,
attn_ratio=ar,
activation=attention_activation,
resolution=resolution, ),
drop_path))
if mr > 0:
h = int(ed * mr)
self.blocks.append(
Residual(
nn.Sequential(
Linear_BN(ed, h),
mlp_activation(),
Linear_BN(
h, ed, bn_weight_init=0), ),
drop_path))
if do[0] == 'Subsample':
#('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride)
resolution_ = (resolution - 1) // do[5] + 1
self.blocks.append(
AttentionSubsample(
*embed_dim[i:i + 2],
key_dim=do[1],
num_heads=do[2],
attn_ratio=do[3],
activation=attention_activation,
stride=do[5],
resolution=resolution,
resolution_=resolution_))
resolution = resolution_
if do[4] > 0: # mlp_ratio
h = int(embed_dim[i + 1] * do[4])
self.blocks.append(
Residual(
nn.Sequential(
Linear_BN(embed_dim[i + 1], h),
mlp_activation(),
Linear_BN(
h, embed_dim[i + 1], bn_weight_init=0), ),
drop_path))
self.blocks = nn.Sequential(*self.blocks)
# Classifier head
self.head = BN_Linear(embed_dim[-1],
class_num) if class_num > 0 else Identity()
if distillation:
self.head_dist = BN_Linear(
embed_dim[-1], class_num) if class_num > 0 else Identity()
def forward(self, x):
x = self.patch_embed(x)
x = x.flatten(2)
x = paddle.transpose(x, perm=[0, 2, 1])
x = self.blocks(x)
x = x.mean(1)
x = paddle.reshape(x, [-1, self.embed_dim[-1]])
if self.distillation:
x = self.head(x), self.head_dist(x)
if not self.training:
x = (x[0] + x[1]) / 2
else:
x = self.head(x)
return x
def model_factory(C, D, X, N, drop_path, class_num, distillation):
embed_dim = [int(x) for x in C.split('_')]
num_heads = [int(x) for x in N.split('_')]
depth = [int(x) for x in X.split('_')]
act = nn.Hardswish
model = LeViT(
patch_size=16,
embed_dim=embed_dim,
num_heads=num_heads,
key_dim=[D] * 3,
depth=depth,
attn_ratio=[2, 2, 2],
mlp_ratio=[2, 2, 2],
down_ops=[
#('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride)
['Subsample', D, embed_dim[0] // D, 4, 2, 2],
['Subsample', D, embed_dim[1] // D, 4, 2, 2],
],
attention_activation=act,
mlp_activation=act,
hybrid_backbone=b16(embed_dim[0], activation=act),
class_num=class_num,
drop_path=drop_path,
distillation=distillation)
return model
specification = {
'LeViT_128S': {
'C': '128_256_384',
'D': 16,
'N': '4_6_8',
'X': '2_3_4',
'drop_path': 0
},
'LeViT_128': {
'C': '128_256_384',
'D': 16,
'N': '4_8_12',
'X': '4_4_4',
'drop_path': 0
},
'LeViT_192': {
'C': '192_288_384',
'D': 32,
'N': '3_5_6',
'X': '4_4_4',
'drop_path': 0
},
'LeViT_256': {
'C': '256_384_512',
'D': 32,
'N': '4_6_8',
'X': '4_4_4',
'drop_path': 0
},
'LeViT_384': {
'C': '384_512_768',
'D': 32,
'N': '6_9_12',
'X': '4_4_4',
'drop_path': 0.1
},
}
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def LeViT_128S(pretrained=False,
use_ssld=False,
class_num=1000,
distillation=False,
**kwargs):
model = model_factory(
**specification['LeViT_128S'],
class_num=class_num,
distillation=distillation)
_load_pretrained(
pretrained, model, MODEL_URLS["LeViT_128S"], use_ssld=use_ssld)
return model
def LeViT_128(pretrained=False,
use_ssld=False,
class_num=1000,
distillation=False,
**kwargs):
model = model_factory(
**specification['LeViT_128'],
class_num=class_num,
distillation=distillation)
_load_pretrained(
pretrained, model, MODEL_URLS["LeViT_128"], use_ssld=use_ssld)
return model
def LeViT_192(pretrained=False,
use_ssld=False,
class_num=1000,
distillation=False,
**kwargs):
model = model_factory(
**specification['LeViT_192'],
class_num=class_num,
distillation=distillation)
_load_pretrained(
pretrained, model, MODEL_URLS["LeViT_192"], use_ssld=use_ssld)
return model
def LeViT_256(pretrained=False,
use_ssld=False,
class_num=1000,
distillation=False,
**kwargs):
model = model_factory(
**specification['LeViT_256'],
class_num=class_num,
distillation=distillation)
_load_pretrained(
pretrained, model, MODEL_URLS["LeViT_256"], use_ssld=use_ssld)
return model
def LeViT_384(pretrained=False,
use_ssld=False,
class_num=1000,
distillation=False,
**kwargs):
model = model_factory(
**specification['LeViT_384'],
class_num=class_num,
distillation=distillation)
_load_pretrained(
pretrained, model, MODEL_URLS["LeViT_384"], use_ssld=use_ssld)
return model