You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
293 lines
8.8 KiB
293 lines
8.8 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Code was based on https://github.com/PingoLH/Pytorch-HarDNet |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
'HarDNet39_ds': |
|
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams', |
|
'HarDNet68_ds': |
|
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams', |
|
'HarDNet68': |
|
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams', |
|
'HarDNet85': |
|
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams' |
|
} |
|
|
|
__all__ = MODEL_URLS.keys() |
|
|
|
|
|
def ConvLayer(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
bias_attr=False): |
|
layer = nn.Sequential( |
|
('conv', nn.Conv2D( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=kernel_size // 2, |
|
groups=1, |
|
bias_attr=bias_attr)), ('norm', nn.BatchNorm2D(out_channels)), |
|
('relu', nn.ReLU6())) |
|
return layer |
|
|
|
|
|
def DWConvLayer(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
bias_attr=False): |
|
layer = nn.Sequential( |
|
('dwconv', nn.Conv2D( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=1, |
|
groups=out_channels, |
|
bias_attr=bias_attr)), ('norm', nn.BatchNorm2D(out_channels))) |
|
return layer |
|
|
|
|
|
def CombConvLayer(in_channels, out_channels, kernel_size=1, stride=1): |
|
layer = nn.Sequential( |
|
('layer1', ConvLayer( |
|
in_channels, out_channels, kernel_size=kernel_size)), |
|
('layer2', DWConvLayer( |
|
out_channels, out_channels, stride=stride))) |
|
return layer |
|
|
|
|
|
class HarDBlock(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
growth_rate, |
|
grmul, |
|
n_layers, |
|
keepBase=False, |
|
residual_out=False, |
|
dwconv=False): |
|
super().__init__() |
|
self.keepBase = keepBase |
|
self.links = [] |
|
layers_ = [] |
|
self.out_channels = 0 # if upsample else in_channels |
|
for i in range(n_layers): |
|
outch, inch, link = self.get_link(i + 1, in_channels, growth_rate, |
|
grmul) |
|
self.links.append(link) |
|
if dwconv: |
|
layers_.append(CombConvLayer(inch, outch)) |
|
else: |
|
layers_.append(ConvLayer(inch, outch)) |
|
|
|
if (i % 2 == 0) or (i == n_layers - 1): |
|
self.out_channels += outch |
|
# print("Blk out =",self.out_channels) |
|
self.layers = nn.LayerList(layers_) |
|
|
|
def get_link(self, layer, base_ch, growth_rate, grmul): |
|
if layer == 0: |
|
return base_ch, 0, [] |
|
out_channels = growth_rate |
|
|
|
link = [] |
|
for i in range(10): |
|
dv = 2**i |
|
if layer % dv == 0: |
|
k = layer - dv |
|
link.append(k) |
|
if i > 0: |
|
out_channels *= grmul |
|
|
|
out_channels = int(int(out_channels + 1) / 2) * 2 |
|
in_channels = 0 |
|
|
|
for i in link: |
|
ch, _, _ = self.get_link(i, base_ch, growth_rate, grmul) |
|
in_channels += ch |
|
|
|
return out_channels, in_channels, link |
|
|
|
def forward(self, x): |
|
layers_ = [x] |
|
|
|
for layer in range(len(self.layers)): |
|
link = self.links[layer] |
|
tin = [] |
|
for i in link: |
|
tin.append(layers_[i]) |
|
if len(tin) > 1: |
|
x = paddle.concat(tin, 1) |
|
else: |
|
x = tin[0] |
|
out = self.layers[layer](x) |
|
layers_.append(out) |
|
|
|
t = len(layers_) |
|
out_ = [] |
|
for i in range(t): |
|
if (i == 0 and self.keepBase) or (i == t - 1) or (i % 2 == 1): |
|
out_.append(layers_[i]) |
|
out = paddle.concat(out_, 1) |
|
|
|
return out |
|
|
|
|
|
class HarDNet(nn.Layer): |
|
def __init__(self, |
|
depth_wise=False, |
|
arch=85, |
|
class_num=1000, |
|
with_pool=True): |
|
super().__init__() |
|
first_ch = [32, 64] |
|
second_kernel = 3 |
|
max_pool = True |
|
grmul = 1.7 |
|
drop_rate = 0.1 |
|
|
|
# HarDNet68 |
|
ch_list = [128, 256, 320, 640, 1024] |
|
gr = [14, 16, 20, 40, 160] |
|
n_layers = [8, 16, 16, 16, 4] |
|
downSamp = [1, 0, 1, 1, 0] |
|
|
|
if arch == 85: |
|
# HarDNet85 |
|
first_ch = [48, 96] |
|
ch_list = [192, 256, 320, 480, 720, 1280] |
|
gr = [24, 24, 28, 36, 48, 256] |
|
n_layers = [8, 16, 16, 16, 16, 4] |
|
downSamp = [1, 0, 1, 0, 1, 0] |
|
drop_rate = 0.2 |
|
|
|
elif arch == 39: |
|
# HarDNet39 |
|
first_ch = [24, 48] |
|
ch_list = [96, 320, 640, 1024] |
|
grmul = 1.6 |
|
gr = [16, 20, 64, 160] |
|
n_layers = [4, 16, 8, 4] |
|
downSamp = [1, 1, 1, 0] |
|
|
|
if depth_wise: |
|
second_kernel = 1 |
|
max_pool = False |
|
drop_rate = 0.05 |
|
|
|
blks = len(n_layers) |
|
self.base = nn.LayerList([]) |
|
|
|
# First Layer: Standard Conv3x3, Stride=2 |
|
self.base.append( |
|
ConvLayer( |
|
in_channels=3, |
|
out_channels=first_ch[0], |
|
kernel_size=3, |
|
stride=2, |
|
bias_attr=False)) |
|
|
|
# Second Layer |
|
self.base.append( |
|
ConvLayer( |
|
first_ch[0], first_ch[1], kernel_size=second_kernel)) |
|
|
|
# Maxpooling or DWConv3x3 downsampling |
|
if max_pool: |
|
self.base.append(nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) |
|
else: |
|
self.base.append(DWConvLayer(first_ch[1], first_ch[1], stride=2)) |
|
|
|
# Build all HarDNet blocks |
|
ch = first_ch[1] |
|
for i in range(blks): |
|
blk = HarDBlock(ch, gr[i], grmul, n_layers[i], dwconv=depth_wise) |
|
ch = blk.out_channels |
|
self.base.append(blk) |
|
|
|
if i == blks - 1 and arch == 85: |
|
self.base.append(nn.Dropout(0.1)) |
|
|
|
self.base.append(ConvLayer(ch, ch_list[i], kernel_size=1)) |
|
ch = ch_list[i] |
|
if downSamp[i] == 1: |
|
if max_pool: |
|
self.base.append(nn.MaxPool2D(kernel_size=2, stride=2)) |
|
else: |
|
self.base.append(DWConvLayer(ch, ch, stride=2)) |
|
|
|
ch = ch_list[blks - 1] |
|
|
|
layers = [] |
|
|
|
if with_pool: |
|
layers.append(nn.AdaptiveAvgPool2D((1, 1))) |
|
|
|
if class_num > 0: |
|
layers.append(nn.Flatten()) |
|
layers.append(nn.Dropout(drop_rate)) |
|
layers.append(nn.Linear(ch, class_num)) |
|
|
|
self.base.append(nn.Sequential(*layers)) |
|
|
|
def forward(self, x): |
|
for layer in self.base: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def HarDNet39_ds(pretrained=False, **kwargs): |
|
model = HarDNet(arch=39, depth_wise=True, **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["HarDNet39_ds"]) |
|
return model |
|
|
|
|
|
def HarDNet68_ds(pretrained=False, **kwargs): |
|
model = HarDNet(arch=68, depth_wise=True, **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["HarDNet68_ds"]) |
|
return model |
|
|
|
|
|
def HarDNet68(pretrained=False, **kwargs): |
|
model = HarDNet(arch=68, **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["HarDNet68"]) |
|
return model |
|
|
|
|
|
def HarDNet85(pretrained=False, **kwargs): |
|
model = HarDNet(arch=85, **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["HarDNet85"]) |
|
return model
|
|
|