You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
363 lines
13 KiB
363 lines
13 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Code was based on https://github.com/huawei-noah/CV-Backbones/tree/master/ghostnet_pytorch |
|
|
|
import math |
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn import Conv2D, BatchNorm, AdaptiveAvgPool2D, Linear |
|
from paddle.regularizer import L2Decay |
|
from paddle.nn.initializer import Uniform, KaimingNormal |
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"GhostNet_x0_5": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams", |
|
"GhostNet_x1_0": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams", |
|
"GhostNet_x1_3": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams", |
|
} |
|
|
|
__all__ = list(MODEL_URLS.keys()) |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
groups=1, |
|
act="relu", |
|
name=None): |
|
super(ConvBNLayer, self).__init__() |
|
self._conv = Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=(kernel_size - 1) // 2, |
|
groups=groups, |
|
weight_attr=ParamAttr( |
|
initializer=KaimingNormal(), name=name + "_weights"), |
|
bias_attr=False) |
|
bn_name = name + "_bn" |
|
|
|
self._batch_norm = BatchNorm( |
|
num_channels=out_channels, |
|
act=act, |
|
param_attr=ParamAttr( |
|
name=bn_name + "_scale", regularizer=L2Decay(0.0)), |
|
bias_attr=ParamAttr( |
|
name=bn_name + "_offset", regularizer=L2Decay(0.0)), |
|
moving_mean_name=bn_name + "_mean", |
|
moving_variance_name=bn_name + "_variance") |
|
|
|
def forward(self, inputs): |
|
y = self._conv(inputs) |
|
y = self._batch_norm(y) |
|
return y |
|
|
|
|
|
class SEBlock(nn.Layer): |
|
def __init__(self, num_channels, reduction_ratio=4, name=None): |
|
super(SEBlock, self).__init__() |
|
self.pool2d_gap = AdaptiveAvgPool2D(1) |
|
self._num_channels = num_channels |
|
stdv = 1.0 / math.sqrt(num_channels * 1.0) |
|
med_ch = num_channels // reduction_ratio |
|
self.squeeze = Linear( |
|
num_channels, |
|
med_ch, |
|
weight_attr=ParamAttr( |
|
initializer=Uniform(-stdv, stdv), name=name + "_1_weights"), |
|
bias_attr=ParamAttr(name=name + "_1_offset")) |
|
stdv = 1.0 / math.sqrt(med_ch * 1.0) |
|
self.excitation = Linear( |
|
med_ch, |
|
num_channels, |
|
weight_attr=ParamAttr( |
|
initializer=Uniform(-stdv, stdv), name=name + "_2_weights"), |
|
bias_attr=ParamAttr(name=name + "_2_offset")) |
|
|
|
def forward(self, inputs): |
|
pool = self.pool2d_gap(inputs) |
|
pool = paddle.squeeze(pool, axis=[2, 3]) |
|
squeeze = self.squeeze(pool) |
|
squeeze = F.relu(squeeze) |
|
excitation = self.excitation(squeeze) |
|
excitation = paddle.clip(x=excitation, min=0, max=1) |
|
excitation = paddle.unsqueeze(excitation, axis=[2, 3]) |
|
out = paddle.multiply(inputs, excitation) |
|
return out |
|
|
|
|
|
class GhostModule(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
output_channels, |
|
kernel_size=1, |
|
ratio=2, |
|
dw_size=3, |
|
stride=1, |
|
relu=True, |
|
name=None): |
|
super(GhostModule, self).__init__() |
|
init_channels = int(math.ceil(output_channels / ratio)) |
|
new_channels = int(init_channels * (ratio - 1)) |
|
self.primary_conv = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=init_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
groups=1, |
|
act="relu" if relu else None, |
|
name=name + "_primary_conv") |
|
self.cheap_operation = ConvBNLayer( |
|
in_channels=init_channels, |
|
out_channels=new_channels, |
|
kernel_size=dw_size, |
|
stride=1, |
|
groups=init_channels, |
|
act="relu" if relu else None, |
|
name=name + "_cheap_operation") |
|
|
|
def forward(self, inputs): |
|
x = self.primary_conv(inputs) |
|
y = self.cheap_operation(x) |
|
out = paddle.concat([x, y], axis=1) |
|
return out |
|
|
|
|
|
class GhostBottleneck(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
hidden_dim, |
|
output_channels, |
|
kernel_size, |
|
stride, |
|
use_se, |
|
name=None): |
|
super(GhostBottleneck, self).__init__() |
|
self._stride = stride |
|
self._use_se = use_se |
|
self._num_channels = in_channels |
|
self._output_channels = output_channels |
|
self.ghost_module_1 = GhostModule( |
|
in_channels=in_channels, |
|
output_channels=hidden_dim, |
|
kernel_size=1, |
|
stride=1, |
|
relu=True, |
|
name=name + "_ghost_module_1") |
|
if stride == 2: |
|
self.depthwise_conv = ConvBNLayer( |
|
in_channels=hidden_dim, |
|
out_channels=hidden_dim, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
groups=hidden_dim, |
|
act=None, |
|
name=name + |
|
"_depthwise_depthwise" # looks strange due to an old typo, will be fixed later. |
|
) |
|
if use_se: |
|
self.se_block = SEBlock(num_channels=hidden_dim, name=name + "_se") |
|
self.ghost_module_2 = GhostModule( |
|
in_channels=hidden_dim, |
|
output_channels=output_channels, |
|
kernel_size=1, |
|
relu=False, |
|
name=name + "_ghost_module_2") |
|
if stride != 1 or in_channels != output_channels: |
|
self.shortcut_depthwise = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
groups=in_channels, |
|
act=None, |
|
name=name + |
|
"_shortcut_depthwise_depthwise" # looks strange due to an old typo, will be fixed later. |
|
) |
|
self.shortcut_conv = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=output_channels, |
|
kernel_size=1, |
|
stride=1, |
|
groups=1, |
|
act=None, |
|
name=name + "_shortcut_conv") |
|
|
|
def forward(self, inputs): |
|
x = self.ghost_module_1(inputs) |
|
if self._stride == 2: |
|
x = self.depthwise_conv(x) |
|
if self._use_se: |
|
x = self.se_block(x) |
|
x = self.ghost_module_2(x) |
|
if self._stride == 1 and self._num_channels == self._output_channels: |
|
shortcut = inputs |
|
else: |
|
shortcut = self.shortcut_depthwise(inputs) |
|
shortcut = self.shortcut_conv(shortcut) |
|
return paddle.add(x=x, y=shortcut) |
|
|
|
|
|
class GhostNet(nn.Layer): |
|
def __init__(self, scale, class_num=1000): |
|
super(GhostNet, self).__init__() |
|
self.cfgs = [ |
|
# k, t, c, SE, s |
|
[3, 16, 16, 0, 1], |
|
[3, 48, 24, 0, 2], |
|
[3, 72, 24, 0, 1], |
|
[5, 72, 40, 1, 2], |
|
[5, 120, 40, 1, 1], |
|
[3, 240, 80, 0, 2], |
|
[3, 200, 80, 0, 1], |
|
[3, 184, 80, 0, 1], |
|
[3, 184, 80, 0, 1], |
|
[3, 480, 112, 1, 1], |
|
[3, 672, 112, 1, 1], |
|
[5, 672, 160, 1, 2], |
|
[5, 960, 160, 0, 1], |
|
[5, 960, 160, 1, 1], |
|
[5, 960, 160, 0, 1], |
|
[5, 960, 160, 1, 1] |
|
] |
|
self.scale = scale |
|
output_channels = int(self._make_divisible(16 * self.scale, 4)) |
|
self.conv1 = ConvBNLayer( |
|
in_channels=3, |
|
out_channels=output_channels, |
|
kernel_size=3, |
|
stride=2, |
|
groups=1, |
|
act="relu", |
|
name="conv1") |
|
# build inverted residual blocks |
|
idx = 0 |
|
self.ghost_bottleneck_list = [] |
|
for k, exp_size, c, use_se, s in self.cfgs: |
|
in_channels = output_channels |
|
output_channels = int(self._make_divisible(c * self.scale, 4)) |
|
hidden_dim = int(self._make_divisible(exp_size * self.scale, 4)) |
|
ghost_bottleneck = self.add_sublayer( |
|
name="_ghostbottleneck_" + str(idx), |
|
sublayer=GhostBottleneck( |
|
in_channels=in_channels, |
|
hidden_dim=hidden_dim, |
|
output_channels=output_channels, |
|
kernel_size=k, |
|
stride=s, |
|
use_se=use_se, |
|
name="_ghostbottleneck_" + str(idx))) |
|
self.ghost_bottleneck_list.append(ghost_bottleneck) |
|
idx += 1 |
|
# build last several layers |
|
in_channels = output_channels |
|
output_channels = int(self._make_divisible(exp_size * self.scale, 4)) |
|
self.conv_last = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=output_channels, |
|
kernel_size=1, |
|
stride=1, |
|
groups=1, |
|
act="relu", |
|
name="conv_last") |
|
self.pool2d_gap = AdaptiveAvgPool2D(1) |
|
in_channels = output_channels |
|
self._fc0_output_channels = 1280 |
|
self.fc_0 = ConvBNLayer( |
|
in_channels=in_channels, |
|
out_channels=self._fc0_output_channels, |
|
kernel_size=1, |
|
stride=1, |
|
act="relu", |
|
name="fc_0") |
|
self.dropout = nn.Dropout(p=0.2) |
|
stdv = 1.0 / math.sqrt(self._fc0_output_channels * 1.0) |
|
self.fc_1 = Linear( |
|
self._fc0_output_channels, |
|
class_num, |
|
weight_attr=ParamAttr( |
|
name="fc_1_weights", initializer=Uniform(-stdv, stdv)), |
|
bias_attr=ParamAttr(name="fc_1_offset")) |
|
|
|
def forward(self, inputs): |
|
x = self.conv1(inputs) |
|
for ghost_bottleneck in self.ghost_bottleneck_list: |
|
x = ghost_bottleneck(x) |
|
x = self.conv_last(x) |
|
x = self.pool2d_gap(x) |
|
x = self.fc_0(x) |
|
x = self.dropout(x) |
|
x = paddle.reshape(x, shape=[-1, self._fc0_output_channels]) |
|
x = self.fc_1(x) |
|
return x |
|
|
|
def _make_divisible(self, v, divisor, min_value=None): |
|
""" |
|
This function is taken from the original tf repo. |
|
It ensures that all layers have a channel number that is divisible by 8 |
|
It can be seen here: |
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py |
|
""" |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
# Make sure that round down does not go down by more than 10%. |
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def GhostNet_x0_5(pretrained=False, use_ssld=False, **kwargs): |
|
model = GhostNet(scale=0.5, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["GhostNet_x0_5"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def GhostNet_x1_0(pretrained=False, use_ssld=False, **kwargs): |
|
model = GhostNet(scale=1.0, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["GhostNet_x1_0"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def GhostNet_x1_3(pretrained=False, use_ssld=False, **kwargs): |
|
model = GhostNet(scale=1.3, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["GhostNet_x1_3"], use_ssld=use_ssld) |
|
return model
|
|
|