You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

363 lines
13 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/huawei-noah/CV-Backbones/tree/master/ghostnet_pytorch
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, AdaptiveAvgPool2D, Linear
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Uniform, KaimingNormal
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"GhostNet_x0_5":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams",
"GhostNet_x1_0":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams",
"GhostNet_x1_3":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act="relu",
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(
initializer=KaimingNormal(), name=name + "_weights"),
bias_attr=False)
bn_name = name + "_bn"
self._batch_norm = BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(
name=bn_name + "_scale", regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(
name=bn_name + "_offset", regularizer=L2Decay(0.0)),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance")
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class SEBlock(nn.Layer):
def __init__(self, num_channels, reduction_ratio=4, name=None):
super(SEBlock, self).__init__()
self.pool2d_gap = AdaptiveAvgPool2D(1)
self._num_channels = num_channels
stdv = 1.0 / math.sqrt(num_channels * 1.0)
med_ch = num_channels // reduction_ratio
self.squeeze = Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_1_weights"),
bias_attr=ParamAttr(name=name + "_1_offset"))
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = Linear(
med_ch,
num_channels,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name=name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
def forward(self, inputs):
pool = self.pool2d_gap(inputs)
pool = paddle.squeeze(pool, axis=[2, 3])
squeeze = self.squeeze(pool)
squeeze = F.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = paddle.clip(x=excitation, min=0, max=1)
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
out = paddle.multiply(inputs, excitation)
return out
class GhostModule(nn.Layer):
def __init__(self,
in_channels,
output_channels,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
relu=True,
name=None):
super(GhostModule, self).__init__()
init_channels = int(math.ceil(output_channels / ratio))
new_channels = int(init_channels * (ratio - 1))
self.primary_conv = ConvBNLayer(
in_channels=in_channels,
out_channels=init_channels,
kernel_size=kernel_size,
stride=stride,
groups=1,
act="relu" if relu else None,
name=name + "_primary_conv")
self.cheap_operation = ConvBNLayer(
in_channels=init_channels,
out_channels=new_channels,
kernel_size=dw_size,
stride=1,
groups=init_channels,
act="relu" if relu else None,
name=name + "_cheap_operation")
def forward(self, inputs):
x = self.primary_conv(inputs)
y = self.cheap_operation(x)
out = paddle.concat([x, y], axis=1)
return out
class GhostBottleneck(nn.Layer):
def __init__(self,
in_channels,
hidden_dim,
output_channels,
kernel_size,
stride,
use_se,
name=None):
super(GhostBottleneck, self).__init__()
self._stride = stride
self._use_se = use_se
self._num_channels = in_channels
self._output_channels = output_channels
self.ghost_module_1 = GhostModule(
in_channels=in_channels,
output_channels=hidden_dim,
kernel_size=1,
stride=1,
relu=True,
name=name + "_ghost_module_1")
if stride == 2:
self.depthwise_conv = ConvBNLayer(
in_channels=hidden_dim,
out_channels=hidden_dim,
kernel_size=kernel_size,
stride=stride,
groups=hidden_dim,
act=None,
name=name +
"_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
)
if use_se:
self.se_block = SEBlock(num_channels=hidden_dim, name=name + "_se")
self.ghost_module_2 = GhostModule(
in_channels=hidden_dim,
output_channels=output_channels,
kernel_size=1,
relu=False,
name=name + "_ghost_module_2")
if stride != 1 or in_channels != output_channels:
self.shortcut_depthwise = ConvBNLayer(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=kernel_size,
stride=stride,
groups=in_channels,
act=None,
name=name +
"_shortcut_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
)
self.shortcut_conv = ConvBNLayer(
in_channels=in_channels,
out_channels=output_channels,
kernel_size=1,
stride=1,
groups=1,
act=None,
name=name + "_shortcut_conv")
def forward(self, inputs):
x = self.ghost_module_1(inputs)
if self._stride == 2:
x = self.depthwise_conv(x)
if self._use_se:
x = self.se_block(x)
x = self.ghost_module_2(x)
if self._stride == 1 and self._num_channels == self._output_channels:
shortcut = inputs
else:
shortcut = self.shortcut_depthwise(inputs)
shortcut = self.shortcut_conv(shortcut)
return paddle.add(x=x, y=shortcut)
class GhostNet(nn.Layer):
def __init__(self, scale, class_num=1000):
super(GhostNet, self).__init__()
self.cfgs = [
# k, t, c, SE, s
[3, 16, 16, 0, 1],
[3, 48, 24, 0, 2],
[3, 72, 24, 0, 1],
[5, 72, 40, 1, 2],
[5, 120, 40, 1, 1],
[3, 240, 80, 0, 2],
[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 1, 1],
[3, 672, 112, 1, 1],
[5, 672, 160, 1, 2],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1]
]
self.scale = scale
output_channels = int(self._make_divisible(16 * self.scale, 4))
self.conv1 = ConvBNLayer(
in_channels=3,
out_channels=output_channels,
kernel_size=3,
stride=2,
groups=1,
act="relu",
name="conv1")
# build inverted residual blocks
idx = 0
self.ghost_bottleneck_list = []
for k, exp_size, c, use_se, s in self.cfgs:
in_channels = output_channels
output_channels = int(self._make_divisible(c * self.scale, 4))
hidden_dim = int(self._make_divisible(exp_size * self.scale, 4))
ghost_bottleneck = self.add_sublayer(
name="_ghostbottleneck_" + str(idx),
sublayer=GhostBottleneck(
in_channels=in_channels,
hidden_dim=hidden_dim,
output_channels=output_channels,
kernel_size=k,
stride=s,
use_se=use_se,
name="_ghostbottleneck_" + str(idx)))
self.ghost_bottleneck_list.append(ghost_bottleneck)
idx += 1
# build last several layers
in_channels = output_channels
output_channels = int(self._make_divisible(exp_size * self.scale, 4))
self.conv_last = ConvBNLayer(
in_channels=in_channels,
out_channels=output_channels,
kernel_size=1,
stride=1,
groups=1,
act="relu",
name="conv_last")
self.pool2d_gap = AdaptiveAvgPool2D(1)
in_channels = output_channels
self._fc0_output_channels = 1280
self.fc_0 = ConvBNLayer(
in_channels=in_channels,
out_channels=self._fc0_output_channels,
kernel_size=1,
stride=1,
act="relu",
name="fc_0")
self.dropout = nn.Dropout(p=0.2)
stdv = 1.0 / math.sqrt(self._fc0_output_channels * 1.0)
self.fc_1 = Linear(
self._fc0_output_channels,
class_num,
weight_attr=ParamAttr(
name="fc_1_weights", initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_1_offset"))
def forward(self, inputs):
x = self.conv1(inputs)
for ghost_bottleneck in self.ghost_bottleneck_list:
x = ghost_bottleneck(x)
x = self.conv_last(x)
x = self.pool2d_gap(x)
x = self.fc_0(x)
x = self.dropout(x)
x = paddle.reshape(x, shape=[-1, self._fc0_output_channels])
x = self.fc_1(x)
return x
def _make_divisible(self, v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def GhostNet_x0_5(pretrained=False, use_ssld=False, **kwargs):
model = GhostNet(scale=0.5, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["GhostNet_x0_5"], use_ssld=use_ssld)
return model
def GhostNet_x1_0(pretrained=False, use_ssld=False, **kwargs):
model = GhostNet(scale=1.0, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["GhostNet_x1_0"], use_ssld=use_ssld)
return model
def GhostNet_x1_3(pretrained=False, use_ssld=False, **kwargs):
model = GhostNet(scale=1.3, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["GhostNet_x1_3"], use_ssld=use_ssld)
return model