You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
527 lines
16 KiB
527 lines
16 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Code was based on https://github.com/ucbdrive/dla |
|
|
|
import math |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
|
|
from paddle.nn.initializer import Normal, Constant |
|
|
|
from ppcls.arch.backbone.base.theseus_layer import Identity |
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"DLA34": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams", |
|
"DLA46_c": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams", |
|
"DLA46x_c": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46x_c_pretrained.pdparams", |
|
"DLA60": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams", |
|
"DLA60x": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams", |
|
"DLA60x_c": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams", |
|
"DLA102": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams", |
|
"DLA102x": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams", |
|
"DLA102x2": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams", |
|
"DLA169": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams" |
|
} |
|
|
|
__all__ = MODEL_URLS.keys() |
|
|
|
zeros_ = Constant(value=0.) |
|
ones_ = Constant(value=1.) |
|
|
|
|
|
class DlaBasic(nn.Layer): |
|
def __init__(self, inplanes, planes, stride=1, dilation=1, **cargs): |
|
super(DlaBasic, self).__init__() |
|
self.conv1 = nn.Conv2D( |
|
inplanes, |
|
planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
bias_attr=False, |
|
dilation=dilation) |
|
self.bn1 = nn.BatchNorm2D(planes) |
|
self.relu = nn.ReLU() |
|
self.conv2 = nn.Conv2D( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=1, |
|
padding=dilation, |
|
bias_attr=False, |
|
dilation=dilation) |
|
self.bn2 = nn.BatchNorm2D(planes) |
|
self.stride = stride |
|
|
|
def forward(self, x, residual=None): |
|
if residual is None: |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class DlaBottleneck(nn.Layer): |
|
expansion = 2 |
|
|
|
def __init__(self, |
|
inplanes, |
|
outplanes, |
|
stride=1, |
|
dilation=1, |
|
cardinality=1, |
|
base_width=64): |
|
super(DlaBottleneck, self).__init__() |
|
self.stride = stride |
|
mid_planes = int( |
|
math.floor(outplanes * (base_width / 64)) * cardinality) |
|
mid_planes = mid_planes // self.expansion |
|
|
|
self.conv1 = nn.Conv2D( |
|
inplanes, mid_planes, kernel_size=1, bias_attr=False) |
|
self.bn1 = nn.BatchNorm2D(mid_planes) |
|
self.conv2 = nn.Conv2D( |
|
mid_planes, |
|
mid_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
bias_attr=False, |
|
dilation=dilation, |
|
groups=cardinality) |
|
self.bn2 = nn.BatchNorm2D(mid_planes) |
|
self.conv3 = nn.Conv2D( |
|
mid_planes, outplanes, kernel_size=1, bias_attr=False) |
|
self.bn3 = nn.BatchNorm2D(outplanes) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x, residual=None): |
|
if residual is None: |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class DlaRoot(nn.Layer): |
|
def __init__(self, in_channels, out_channels, kernel_size, residual): |
|
super(DlaRoot, self).__init__() |
|
self.conv = nn.Conv2D( |
|
in_channels, |
|
out_channels, |
|
1, |
|
stride=1, |
|
bias_attr=False, |
|
padding=(kernel_size - 1) // 2) |
|
self.bn = nn.BatchNorm2D(out_channels) |
|
self.relu = nn.ReLU() |
|
self.residual = residual |
|
|
|
def forward(self, *x): |
|
children = x |
|
x = self.conv(paddle.concat(x, 1)) |
|
x = self.bn(x) |
|
if self.residual: |
|
x += children[0] |
|
x = self.relu(x) |
|
|
|
return x |
|
|
|
|
|
class DlaTree(nn.Layer): |
|
def __init__(self, |
|
levels, |
|
block, |
|
in_channels, |
|
out_channels, |
|
stride=1, |
|
dilation=1, |
|
cardinality=1, |
|
base_width=64, |
|
level_root=False, |
|
root_dim=0, |
|
root_kernel_size=1, |
|
root_residual=False): |
|
super(DlaTree, self).__init__() |
|
if root_dim == 0: |
|
root_dim = 2 * out_channels |
|
if level_root: |
|
root_dim += in_channels |
|
|
|
self.downsample = nn.MaxPool2D( |
|
stride, stride=stride) if stride > 1 else Identity() |
|
self.project = Identity() |
|
cargs = dict( |
|
dilation=dilation, cardinality=cardinality, base_width=base_width) |
|
|
|
if levels == 1: |
|
self.tree1 = block(in_channels, out_channels, stride, **cargs) |
|
self.tree2 = block(out_channels, out_channels, 1, **cargs) |
|
if in_channels != out_channels: |
|
self.project = nn.Sequential( |
|
nn.Conv2D( |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
bias_attr=False), |
|
nn.BatchNorm2D(out_channels)) |
|
else: |
|
cargs.update( |
|
dict( |
|
root_kernel_size=root_kernel_size, |
|
root_residual=root_residual)) |
|
self.tree1 = DlaTree( |
|
levels - 1, |
|
block, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
root_dim=0, |
|
**cargs) |
|
self.tree2 = DlaTree( |
|
levels - 1, |
|
block, |
|
out_channels, |
|
out_channels, |
|
root_dim=root_dim + out_channels, |
|
**cargs) |
|
|
|
if levels == 1: |
|
self.root = DlaRoot(root_dim, out_channels, root_kernel_size, |
|
root_residual) |
|
|
|
self.level_root = level_root |
|
self.root_dim = root_dim |
|
self.levels = levels |
|
|
|
def forward(self, x, residual=None, children=None): |
|
children = [] if children is None else children |
|
bottom = self.downsample(x) |
|
residual = self.project(bottom) |
|
|
|
if self.level_root: |
|
children.append(bottom) |
|
x1 = self.tree1(x, residual) |
|
|
|
if self.levels == 1: |
|
x2 = self.tree2(x1) |
|
x = self.root(x2, x1, *children) |
|
else: |
|
children.append(x1) |
|
x = self.tree2(x1, children=children) |
|
return x |
|
|
|
|
|
class DLA(nn.Layer): |
|
def __init__(self, |
|
levels, |
|
channels, |
|
in_chans=3, |
|
cardinality=1, |
|
base_width=64, |
|
block=DlaBottleneck, |
|
residual_root=False, |
|
drop_rate=0.0, |
|
class_num=1000, |
|
with_pool=True): |
|
super(DLA, self).__init__() |
|
self.channels = channels |
|
self.class_num = class_num |
|
self.with_pool = with_pool |
|
self.cardinality = cardinality |
|
self.base_width = base_width |
|
self.drop_rate = drop_rate |
|
|
|
self.base_layer = nn.Sequential( |
|
nn.Conv2D( |
|
in_chans, |
|
channels[0], |
|
kernel_size=7, |
|
stride=1, |
|
padding=3, |
|
bias_attr=False), |
|
nn.BatchNorm2D(channels[0]), |
|
nn.ReLU()) |
|
|
|
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0]) |
|
self.level1 = self._make_conv_level( |
|
channels[0], channels[1], levels[1], stride=2) |
|
|
|
cargs = dict( |
|
cardinality=cardinality, |
|
base_width=base_width, |
|
root_residual=residual_root) |
|
|
|
self.level2 = DlaTree( |
|
levels[2], |
|
block, |
|
channels[1], |
|
channels[2], |
|
2, |
|
level_root=False, |
|
**cargs) |
|
self.level3 = DlaTree( |
|
levels[3], |
|
block, |
|
channels[2], |
|
channels[3], |
|
2, |
|
level_root=True, |
|
**cargs) |
|
self.level4 = DlaTree( |
|
levels[4], |
|
block, |
|
channels[3], |
|
channels[4], |
|
2, |
|
level_root=True, |
|
**cargs) |
|
self.level5 = DlaTree( |
|
levels[5], |
|
block, |
|
channels[4], |
|
channels[5], |
|
2, |
|
level_root=True, |
|
**cargs) |
|
|
|
self.feature_info = [ |
|
# rare to have a meaningful stride 1 level |
|
dict( |
|
num_chs=channels[0], reduction=1, module='level0'), |
|
dict( |
|
num_chs=channels[1], reduction=2, module='level1'), |
|
dict( |
|
num_chs=channels[2], reduction=4, module='level2'), |
|
dict( |
|
num_chs=channels[3], reduction=8, module='level3'), |
|
dict( |
|
num_chs=channels[4], reduction=16, module='level4'), |
|
dict( |
|
num_chs=channels[5], reduction=32, module='level5'), |
|
] |
|
|
|
self.num_features = channels[-1] |
|
|
|
if with_pool: |
|
self.global_pool = nn.AdaptiveAvgPool2D(1) |
|
|
|
if class_num > 0: |
|
self.fc = nn.Conv2D(self.num_features, class_num, 1) |
|
|
|
for m in self.sublayers(): |
|
if isinstance(m, nn.Conv2D): |
|
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels |
|
normal_ = Normal(mean=0.0, std=math.sqrt(2. / n)) |
|
normal_(m.weight) |
|
elif isinstance(m, nn.BatchNorm2D): |
|
ones_(m.weight) |
|
zeros_(m.bias) |
|
|
|
def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1): |
|
modules = [] |
|
for i in range(convs): |
|
modules.extend([ |
|
nn.Conv2D( |
|
inplanes, |
|
planes, |
|
kernel_size=3, |
|
stride=stride if i == 0 else 1, |
|
padding=dilation, |
|
bias_attr=False, |
|
dilation=dilation), nn.BatchNorm2D(planes), nn.ReLU() |
|
]) |
|
inplanes = planes |
|
return nn.Sequential(*modules) |
|
|
|
def forward_features(self, x): |
|
x = self.base_layer(x) |
|
|
|
x = self.level0(x) |
|
x = self.level1(x) |
|
x = self.level2(x) |
|
x = self.level3(x) |
|
x = self.level4(x) |
|
x = self.level5(x) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
if self.with_pool: |
|
x = self.global_pool(x) |
|
|
|
if self.drop_rate > 0.: |
|
x = F.dropout(x, p=self.drop_rate, training=self.training) |
|
|
|
if self.class_num > 0: |
|
x = self.fc(x) |
|
x = x.flatten(1) |
|
|
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def DLA34(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 1, 2, 2, 1), |
|
channels=(16, 32, 64, 128, 256, 512), |
|
block=DlaBasic, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA34"]) |
|
return model |
|
|
|
|
|
def DLA46_c(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 1, 2, 2, 1), |
|
channels=(16, 32, 64, 64, 128, 256), |
|
block=DlaBottleneck, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA46_c"]) |
|
return model |
|
|
|
|
|
def DLA46x_c(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 1, 2, 2, 1), |
|
channels=(16, 32, 64, 64, 128, 256), |
|
block=DlaBottleneck, |
|
cardinality=32, |
|
base_width=4, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA46x_c"]) |
|
return model |
|
|
|
|
|
def DLA60(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 1, 2, 3, 1), |
|
channels=(16, 32, 128, 256, 512, 1024), |
|
block=DlaBottleneck, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA60"]) |
|
return model |
|
|
|
|
|
def DLA60x(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 1, 2, 3, 1), |
|
channels=(16, 32, 128, 256, 512, 1024), |
|
block=DlaBottleneck, |
|
cardinality=32, |
|
base_width=4, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA60x"]) |
|
return model |
|
|
|
|
|
def DLA60x_c(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 1, 2, 3, 1), |
|
channels=(16, 32, 64, 64, 128, 256), |
|
block=DlaBottleneck, |
|
cardinality=32, |
|
base_width=4, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA60x_c"]) |
|
return model |
|
|
|
|
|
def DLA102(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 1, 3, 4, 1), |
|
channels=(16, 32, 128, 256, 512, 1024), |
|
block=DlaBottleneck, |
|
residual_root=True, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA102"]) |
|
return model |
|
|
|
|
|
def DLA102x(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 1, 3, 4, 1), |
|
channels=(16, 32, 128, 256, 512, 1024), |
|
block=DlaBottleneck, |
|
cardinality=32, |
|
base_width=4, |
|
residual_root=True, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA102x"]) |
|
return model |
|
|
|
|
|
def DLA102x2(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 1, 3, 4, 1), |
|
channels=(16, 32, 128, 256, 512, 1024), |
|
block=DlaBottleneck, |
|
cardinality=64, |
|
base_width=4, |
|
residual_root=True, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA102x2"]) |
|
return model |
|
|
|
|
|
def DLA169(pretrained=False, **kwargs): |
|
model = DLA(levels=(1, 1, 2, 3, 5, 1), |
|
channels=(16, 32, 128, 256, 512, 1024), |
|
block=DlaBottleneck, |
|
residual_root=True, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["DLA169"]) |
|
return model
|
|
|